POJ 1741 Tree 树分治
题意:
给出一颗有\(n (n \leq 10^4)\)个节点的树,和一个\(k\)。统计有多少个点对\(u, \, v(u \neq v)\)满足\(u\)到\(v\)的最短距离不超过\(k\)。
分析:
树分治的入门题,可以参考论文《分治算法在树的路径问题中的应用》。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
typedef pair<int, int> PII;
const int maxn = 10000 + 10;
const int INF = 0x3f3f3f3f;
struct Edge
{
int v, w, nxt;
Edge() {}
Edge(int v, int w, int nxt): v(v), w(w), nxt(nxt) {}
};
int n, k;
int ecnt, head[maxn];
Edge edges[maxn * 2];
void AddEdge(int u, int v, int w) {
edges[ecnt] = Edge(v, w, head[u]);
head[u] = ecnt++;
}
int sz[maxn], fa[maxn]; //sz[u]是以u为根子树的大小,fa[u]是u的父亲
bool del[maxn]; //del[u]表示u作为某颗子树的重心删除的标记
int ans, mins, centroid; //最终答案,最小的最大子树以及重心
vector<int> d, d2;
//计算sz和fa
void dfs(int u) {
sz[u] = 1;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] || del[v]) continue;
fa[v] = u;
dfs(v);
sz[u] += sz[v];
}
}
//计算重心
void dfs2(int u, int t) {
int m = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] || del[v]) continue;
m = max(m, sz[v]);
dfs2(v, t);
}
m = max(m, t - sz[u]);
if(m < mins) { mins = m; centroid = u; }
}
//统计所有点到根节点的距离
void getdist(int u, int p, int dist, vector<int>& d) {
d.push_back(dist);
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v, w = edges[i].w;
if(v == p || del[v]) continue;
getdist(v, u, dist + w, d);
}
}
//统计符合要求点对个数
int cntpair(vector<int>& d) {
int ans = 0;
sort(d.begin(), d.end());
int j = d.size();
for(int i = 0; i < d.size(); i++) {
while(j > 0 && d[i] + d[j-1] > k) j--;
ans += j - (j > i ? 1 : 0); //去掉和自己成为一对的情况
}
return ans / 2;
}
//分治过程
void solve(int u) {
fa[u] = 0;
dfs(u);
mins = INF;
dfs2(u, sz[u]);
int s = centroid;
del[s] = true;
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v]) continue;
solve(v);
}
d.clear();
d.push_back(0);
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v, w = edges[i].w;
if(del[v]) continue;
d2.clear();
getdist(v, s, w, d2);
ans -= cntpair(d2); //去掉计重部分
d.insert(d.end(), d2.begin(), d2.end());
}
ans += cntpair(d);
del[s] = false;
}
int main()
{
while(scanf("%d%d", &n, &k) == 2) {
if(!n && !k) break;
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
AddEdge(u, v, w);
AddEdge(v, u, w);
}
ans = 0;
solve(1);
printf("%d\n", ans);
}
return 0;
}