CodeForces 568B DP Symmetric and Transitive

题意:

根据离散数学的内容知道,一个二元关系是一个二元有序组<x, y>的集合。

然后有一些特殊的二元关系,比如等价关系,满足三个条件:

  • 自反性,任意的x,都有二元关系<x, x>
  • 对称性,如果有<x, y>则有<y, x>
  • 传递性,如果有<x, y>和<y, z>,则有<x, z>

 

现在要统计满足后两条,但不满足第一个条件的二元关系的个数。

 

题中的证明是对的:

If , then (according to property (2)), which means (according to property (3)).

但是前提条件不一定存在,比如对于a,没有一个b满足那么后面的推导就无从谈起了。

 

不妨把这些不和其他元素(包括自己)产生二元关系的元素称作「空」的。

只要至少有一个「空」的元素,而且其他的元素都在某个等价类里面,就满足题目中的要求。

枚举非「空」元素的个数k(1 ≤ k ≤ n),选出k个元素有C(n, k)中方案,再乘上将k个元素划分为若干个等价类的方案数eq[k],累加起来就是答案。

 

eq数组可以这样计算:

设d(i, j)为将i个元素划分为j个不同等价类的方案数,d(i, j) = d(i-1, j) * j + d(i-1, j-1) //考虑第i个数加入已有的j个等价类,或者自己成为一个新的等价类

那么eq[i] = sum{ d(i, j) | 0 ≤ j ≤ i }

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 
 7 typedef long long LL;
 8 
 9 const int maxn = 4000 + 10;
10 const LL MOD = 1000000007;
11 
12 LL C[maxn][maxn], d[maxn][maxn];
13 
14 void add(LL& x, LL y)
15 {
16     x += y;
17     if(x >= MOD) x -= MOD;
18 }
19 
20 int main()
21 {
22     int n; scanf("%d", &n);
23 
24     for(int i = 0; i <= n; i++) C[i][0] = C[i][i] = 1;
25     for(int i = 2; i <= n; i++)
26         for(int j = 1; j < i; j++) C[i][j] = (C[i-1][j] + C[i-1][j-1]) % MOD;
27 
28     d[0][0] = 1;
29     for(int i = 1; i <= n; i++)
30         for(int j = 1; j <= i; j++) d[i][j] = (d[i-1][j] * j + d[i-1][j-1]) % MOD;
31 
32     LL ans = 0;
33     for(int i = 0; i < n; i++)
34     {
35         LL eq = 0;
36         for(int j = 0; j <= i; j++) add(eq, d[i][j]);
37         ans = (ans + C[n][i] * eq) % MOD;
38     }
39 
40     printf("%I64d\n", ans);
41 
42     return 0;
43 }
代码君

 

posted @ 2015-09-01 19:17  AOQNRMGYXLMV  阅读(252)  评论(0编辑  收藏  举报