HDU 3480 DP 斜率优化 Division
把n个数分成m段,每段的值为(MAX - MIN)2,求所能划分得到的最小值。
依然是先从小到大排个序,定义状态d(j, i)表示把前i个数划分成j段,所得到的最小值,则有状态转移方程:
d(j, i) = min { d(j-1, k) + (ai - ak+1)2 | 0 ≤ k < i }
设 l < k < i,且由k转移得到的状态比由l转移得到的状态更优。
有不等式:
整理成斜率形式:
后面的就可以相当于套模板了,不过这里要用滚动数组优化一下空间。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 using namespace std; 6 7 const int maxn = 10000 + 10; 8 const int maxm = 5000 + 10; 9 const int INF = 0x3f3f3f3f; 10 11 int n, m; 12 13 int a[maxn]; 14 int d[2][maxn]; 15 16 int head, tail; 17 int Q[maxn]; 18 19 int cur; 20 21 int inline Y(int x) { return d[cur^1][x] + a[x+1] * a[x+1]; } 22 23 int inline DY(int p, int q) { return Y(q) - Y(p); } 24 25 int inline DX(int p, int q) { return a[q+1] - a[p+1]; } 26 27 int main() 28 { 29 freopen("in.txt", "r", stdin); 30 31 int T; scanf("%d", &T); 32 for(int kase = 1; kase <= T; kase++) 33 { 34 scanf("%d%d", &n, &m); 35 for(int i = 1; i <= n; i++) scanf("%d", a + i); 36 sort(a + 1, a + 1 + n); 37 38 memset(d[0], 0x3f, sizeof(d[0])); 39 d[0][0] = 0; 40 cur = 0; 41 for(int i = 1; i <= m; i++) 42 { 43 cur ^= 1; 44 head = tail = 0; 45 Q[tail++] = 0; 46 for(int j = 1; j <= n; j++) 47 { 48 while(head + 1 < tail && DY(Q[head], Q[head+1]) <= DX(Q[head], Q[head+1]) * 2 * a[j]) head++; 49 while(head + 1 < tail && DY(Q[tail-1], j) * DX(Q[tail-2], Q[tail-1]) <= DY(Q[tail-2], Q[tail-1]) * DX(Q[tail-1], j)) tail--; 50 Q[tail++] = j; 51 d[cur][j] = d[cur^1][Q[head]] + (a[j]-a[Q[head]+1]) * (a[j]-a[Q[head]+1]); 52 } 53 } 54 printf("Case %d: %d\n", kase, d[cur][n]); 55 } 56 57 return 0; 58 }
下面是四边形不等式优化的代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 using namespace std; 6 7 const int maxn = 10000 + 10; 8 const int maxm = 5000 + 10; 9 const int INF = 0x3f3f3f3f; 10 11 int n, m; 12 13 int a[maxn]; 14 int d[maxm][maxn], s[maxm][maxn]; 15 16 int main() 17 { 18 int T; scanf("%d", &T); 19 for(int kase = 1; kase <= T; kase++) 20 { 21 scanf("%d%d", &n, &m); 22 23 for(int i = 1; i <= n; i++) scanf("%d", a + i); 24 sort(a + 1, a + 1 + n); 25 26 memset(s, 0, sizeof(s)); 27 for(int i = 1; i <= m; i++) 28 { 29 int j; 30 for(j = 1; j <= i; j++) d[i][j] = 0; 31 for(; j <= n; j++) d[i][j] = INF; 32 } 33 34 for(int i = 1; i <= n; i++) 35 { 36 s[1][i] = 0; 37 d[1][i] = (a[i] - a[1]) * (a[i] - a[1]); 38 } 39 40 for(int i = 2; i <= m; i++) 41 { 42 s[i][n+1] = n; 43 for(int j = n; j > i; j--) 44 { 45 for(int k = s[i-1][j]; k <= s[i][j+1]; k++) 46 { 47 int t = d[i-1][k] + (a[j] - a[k+1]) * (a[j] - a[k+1]); 48 if(t < d[i][j]) 49 { 50 d[i][j] = t; 51 s[i][j] = k; 52 } 53 } 54 } 55 } 56 57 printf("Case %d: %d\n", kase, d[m][n]); 58 } 59 60 return 0; 61 }