HDU 3389 (Nim博弈变形) Game

参考了众巨巨的博客,现在重新整理一下自己的思路。

首先在纸上画了一下转移图:

1 3 4号盒子是不能够再转移卡片到其他盒子中去了的,其他盒子中的卡片经过若干步的转移最终也一定会转移到1 3 4号盒子中去。

具体来说,n % 6 == 0 或 2 或 5的盒子,经过奇数步转移到1 3 4中去,其他的则须经过偶数步才能转移过去。

 

下面来证明,所有卡片都在偶数步盒子中是必败状态

因为不论先手将偶数步的盒子中卡片移走了多少,后手一定可以把这些卡片再往前移动一个盒子,直到移到1 3 4中去为止。

 

对于只有一个盒子有卡片,而且这个盒子是奇数步盒子来说,先手必胜

很简单,根据上面的结论,只要先手把这个奇数步盒子中所有卡片全部往下移一个盒子就好了。这样就转移到了先手必败状态。

 

整个游戏可以看做若干个子游戏的和游戏,偶数步盒子不予考虑,只考虑奇数步盒子中的卡片,这就相当于一个n堆石子的Nim游戏。

在一个奇数步盒子中移走k张卡片,相当于在某一堆石子中取走k个石子。把所有石子取完相当于,所有的卡片都在偶数步的盒子里面,而我们已经证明完这种状态是必败状态了。

 

所以在代码中就只需要将奇数步盒子中的卡片数异或一下求个Nim和,就能判断胜负了。

 1 #include <cstdio>
 2 
 3 int main()
 4 {
 5     //freopen("in.txt", "r", stdin);
 6 
 7     int T; scanf("%d", &T);
 8     for(int kase = 1; kase <= T; kase++)
 9     {
10         int n; scanf("%d", &n);
11         int a, sum = 0;
12         for(int i = 1; i <= n; i++)
13         {
14             scanf("%d", &a);
15             if(i%6==0 || i%6==2 || i%6==5) sum ^= a;
16         }
17         printf("Case %d: %s\n", kase, sum ? "Alice" : "Bob");
18     }
19 
20     return 0;
21 }
代码君

 

posted @ 2015-04-25 14:28  AOQNRMGYXLMV  阅读(342)  评论(0编辑  收藏  举报