Flink+Kafka整合的实例
Flink+Kafka整合实例
1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01。
2.我的pom.xml文件配置如下。
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.hrb.lhr</groupId> <artifactId>kafka01</artifactId> <version>1.0-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <flink.version>1.1.4</flink.version> <slf4j.version>1.7.7</slf4j.version> <log4j.version>1.2.17</log4j.version> </properties> <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.11</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>${flink.version}</version> </dependency> <!-- explicitly add a standard loggin framework, as Flink does not (in the future) have a hard dependency on one specific framework by default --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>${slf4j.version}</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>${log4j.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka-0.9_2.11</artifactId> <version>${flink.version}</version> </dependency> </dependencies> </project>
3.在项目的目录/src/main/java在创建两个Java类,分别命名为KafkaDemo和CustomWatermarkEmitter,代码如下所示。
import java.util.Properties; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09; import org.apache.flink.streaming.util.serialization.SimpleStringSchema; public class KafkaDeme { public static void main(String[] args) throws Exception { // set up the streaming execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //默认情况下,检查点被禁用。要启用检查点,请在StreamExecutionEnvironment上调用enableCheckpointing(n)方法, // 其中n是以毫秒为单位的检查点间隔。每隔5000 ms进行启动一个检查点,则下一个检查点将在上一个检查点完成后5秒钟内启动 env.enableCheckpointing(5000); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "10.192.12.106:9092");//kafka的节点的IP或者hostName,多个使用逗号分隔 properties.setProperty("zookeeper.connect", "10.192.12.106:2181");//zookeeper的节点的IP或者hostName,多个使用逗号进行分隔 properties.setProperty("group.id", "test-consumer-group");//flink consumer flink的消费者的group.id FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<String>("test0", new SimpleStringSchema(), properties);//test0是kafka中开启的topic myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter()); DataStream<String> keyedStream = env.addSource(myConsumer);//将kafka生产者发来的数据进行处理,本例子我进任何处理 keyedStream.print();//直接将从生产者接收到的数据在控制台上进行打印 // execute program env.execute("Flink Streaming Java API Skeleton"); }
import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks; import org.apache.flink.streaming.api.watermark.Watermark; public class CustomWatermarkEmitter implements AssignerWithPunctuatedWatermarks<String> { private static final long serialVersionUID = 1L; public long extractTimestamp(String arg0, long arg1) { if (null != arg0 && arg0.contains(",")) { String parts[] = arg0.split(","); return Long.parseLong(parts[0]); } return 0; } public Watermark checkAndGetNextWatermark(String arg0, long arg1) { if (null != arg0 && arg0.contains(",")) { String parts[] = arg0.split(","); return new Watermark(Long.parseLong(parts[0])); } return null; } }
4.开启一台配置好zookeeper和kafka的Ubuntu虚拟机,输入以下命令分别开启zookeeper、kafka、topic、producer。(zookeeper和kafka的配置可参考https://www.cnblogs.com/ALittleMoreLove/p/9396745.html)
bin/zkServer.sh start bin/kafka-server-start.sh config/server.properties bin/kafka-topics.sh --create --zookeeper 10.192.12.106:2181 --replication-factor 1 --partitions 1 --topic test0 bin/kafka-console-producer.sh --broker-list 10.192.12.106:9092 --topic test0
5.检测Flink程序是否可以接收到来自Kafka生产者发来的数据,运行Java类KafkaDemo,在开启kafka生产者的终端下随便输入一段话,在IDEA控制台可以收到该信息,如下为kafka生产者终端和控制台。
OK,成功的接收到了来自Kafka生产者的消息^.^。