Leetcode 169 -- 分治&&摩尔投票法

题目描述

Majority Element


思路

分治法参考官方题解

其实这里的分治算法和归并排序很相像。


摩尔投票算法(同归于尽消杀法)

如果我们把出现次数大于数据长度一半的数记为 \(+1\),把其他数记为 \(−1\),将它们全部加起来,显然和大于 \(0\)

证明

“同归于尽消杀法” :
由于多数超过50%, 比如100个数,那么多数至少51个,剩下少数是49个。

  1. 遍历数组
  2. 第一个到来的士兵,直接插上自己阵营的旗帜占领这块高地,此时领主 winner 就是这个阵营的人,现存兵力 count = 1。
  3. 如果新来的士兵和前一个士兵是同一阵营,则集合起来占领高地,领主不变,winner 依然是当前这个士兵所属阵营,现存兵力 count 加一;
  4. 如果新来到的士兵不是同一阵营,则前方阵营派一个士兵和它同归于尽。 此时前方阵营兵力-1, 即使双方都死光,这块高地的旗帜 winner 不变,没有可以去换上自己的新旗帜。
  5. 当下一个士兵到来,发现前方阵营已经没有兵力,新士兵就成了领主,winner 变成这个士兵所属阵营的旗帜,现存兵力 count ++。

就这样各路军阀一直厮杀以一敌一同归于尽的方式下去,直到少数阵营都死光,剩下几个必然属于多数阵营的,winner 是多数阵营。

(多数阵营 51个,少数阵营只有49个,死剩下的2个就是多数阵营的人)

投票算法证明:
如果候选人不是 maj ,则 maj 会和其他非候选人一起反对,所以候选人一定会下台(maj==0时发生换届选举)
如果候选人是 maj , 则 maj 会支持自己,其他候选人会反对,同样因为 maj 票数超过一半,所以maj 一定会成功当选


代码-分治

class Solution {
public:
    int get_range(vector<int> &nums, int l, int r, int target)
    {
        int cnt = 0;
        for(int i = l; i <= r; i ++ )
            if(nums[i] == target)   cnt ++ ;
        return cnt;
    }
    int merge(vector<int> &nums, int l, int r)
    {
        if(l == r)  return nums[l];
        int mid = l + r >> 1;
        int left_candidate  = merge(nums, l, mid);
        int right_candidate = merge(nums, mid + 1, r);
        if(left_candidate != right_candidate)
        {
            if(get_range(nums, mid + 1, r, right_candidate) >= get_range(nums, l, mid, left_candidate))
                return right_candidate;
        }   
        return left_candidate;
    }
    int majorityElement(vector<int>& nums) {
        return merge(nums, 0, nums.size() - 1);
    }
};

代码--摩尔投票

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int candidate = -1, count = 0;
        for(auto &x : nums) {
            if(count == 0) {
                candidate = x;
                count = 1;
            }
            else {
                count += (x == candidate ? 1 : -1);
            }
        }

        return candidate;
    }
};

众数

众数指的是一组数据当中出现次数最多的数,若数据的数据值出现次数相同且无其他数据值时,则不存在众数。
例如 \([1, 2, 2, 1]\) 就不存在众数。

posted @ 2022-10-21 12:40  光風霽月  阅读(42)  评论(0编辑  收藏  举报