CNN模板

该代码使用CNN,实现一个简单的10分类问题

代码如下:

复制代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

#准备数据CIFAR10
(train_images, train_labels),(test_images, test_labels)=datasets.cifar10.load_data()
#将像素的值标准化
train_images=train_images/255.0
test_images=test_images/255.0

#验证数据,将前25张图片打印出来
'''
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()
'''

#构建神经网络模型CNN
model=models.Sequential()
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Conv2D(64, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64,(3,3), activation='relu'))

#构建全联接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

#查看整个CNN结构
model.summary()

#训练并编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
              )
history=model.fit(train_images, train_labels, epochs=10,
                   validation_data=(test_images, test_labels))

#模型评估
plt.rcParams['font.sans-serif']=['SimHei']
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('')
plt.ylabel('准确率:')
plt.ylim([0.5, 1])
plt.legend(loc='best')
plt.show()
复制代码

 

作者:ALINGMAOMAO

出处:https://www.cnblogs.com/ALINGMAOMAO/p/14108123.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   青山新雨  阅读(218)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
阅读排行:
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
· SQL Server 2025 AI相关能力初探
more_horiz
keyboard_arrow_up light_mode palette
选择主题
点击右上角即可分享
微信分享提示