BZOJ2653:middle

浅谈主席树:https://www.cnblogs.com/AKMer/p/9956734.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2653

首先,我们判断一个序列的中位数是否大于等于\(limit\),我们可以使大于\(limit\)的值为\(1\),小于\(limit\)的值为\(-1\)。如果这个新序列的和大于等于\(0\),那么就说明中位数大于等于\(limit\),然后我们就可以二分了。

我们二分一个值,使得读入的数组大于等于这个值的变成\(1\),小于这个值的变成\(-1\)。首先\(b\)\(c\)这一段是肯定要选的,直接把新数组权值和加进来。然后\(a\)\(b-1\)取最大右段和,\(c+1\)\(d\)取最大左段和,用主席树维护就行了。我们根据值从小到大建主席树,每次建\(rt[i]\)主席树时,把值为第\(i\)小的位置上变成\(1\)就行了,初始所有位置都是\(1\)。由于每个值只有\(1\)\(-1\)两种状态,所以空间复杂度过得去。

时间复杂度:\(O(mlog^2n)\)

空间复杂度:\(O(nlogn)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn=2e4+5;

int n,m,lstans;
int Q[5],rt[maxn];

int read() {
	int x=0,f=1;char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
	for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
	return x*f;
}

struct data {
	int v,pos;

	bool operator<(const data &a)const {
		return v<a.v;
	}
}a[maxn];

struct tree_node {
	int ls,rs;
	int sum,lmx,rmx;

	tree_node () {}

	tree_node (int _ls,int _rs,int _sum,int _lmx,int _rmx) {
		ls=_ls,rs=_rs,sum=_sum,lmx=_lmx,rmx=_rmx;
	}
};

struct chairman_tree {
	int tot;
	tree_node tree[maxn*20];
	
	tree_node merge(tree_node a,tree_node b) {
		tree_node res;
	    res.sum=a.sum+b.sum;
	    res.lmx=max(a.lmx,b.lmx+a.sum);
	    res.rmx=max(b.rmx,a.rmx+b.sum);
		return res;
	}

	void updata(int p) {
		int lson=tree[p].ls,rson=tree[p].rs;
		tree[p]=merge(tree[lson],tree[rson]);
		tree[p].ls=lson,tree[p].rs=rson;
	}
	
	void build(int &now,int l,int r) {
		now=++tot;
		if(l==r) {
			tree[now].sum=1;
			tree[now].lmx=1;
			tree[now].rmx=1;
			return;
		}
		int mid=(l+r)>>1;
		build(tree[now].ls,l,mid);
		build(tree[now].rs,mid+1,r);
		updata(now);
	}

	void change(int lst,int &now,int l,int r,int pos) {
		now=++tot;tree[now]=tree[lst];
		if(l==r) {
			tree[now].sum=-1;
			tree[now].lmx=-1;
			tree[now].rmx=-1;
			return;
		}
		int mid=(l+r)>>1;
		if(pos<=mid)change(tree[lst].ls,tree[now].ls,l,mid,pos);
		else change(tree[lst].rs,tree[now].rs,mid+1,r,pos);
		updata(now);
	}

	tree_node query(int now,int l,int r,int L,int R) {
		if(R<L)return tree_node(0,0,0,0,0);
		if(L<=l&&r<=R)return tree[now];
		int lson=tree[now].ls,rson=tree[now].rs;
		int mid=(l+r)>>1;tree_node res;
		if(R<=mid)res=query(tree[now].ls,l,mid,L,R);
		else if(L>mid)res=query(tree[now].rs,mid+1,r,L,R);
		else res=merge(query(lson,l,mid,L,R),query(rson,mid+1,r,L,R));
		return res;
	}
}T;

bool check(int x) {
	int a=max(0,T.query(rt[x],1,n,Q[1],Q[2]-1).rmx);
	int b=T.query(rt[x],1,n,Q[2],Q[3]).sum;
	int c=max(0,T.query(rt[x],1,n,Q[3]+1,Q[4]).lmx);//如果是负数我可以不要,所以和0一起取max
	int sum=a+b+c;
	return sum>=0;
}

int main() {
	n=read();
	for(int i=1;i<=n;i++)
		a[i].v=read(),a[i].pos=i;
	sort(a+1,a+n+1);T.build(rt[1],1,n);
	for(int i=2;i<=n;i++)
		T.change(rt[i-1],rt[i],1,n,a[i-1].pos);
	m=read();
	for(int i=1;i<=m;i++) {
		for(int j=1;j<5;j++)
			Q[j]=(read()+lstans)%n+1;
		sort(Q+1,Q+5);
		int l=1,r=n;
		while(l<r) {
			int mid=(l+r+1)>>1;
			if(check(mid))l=mid;
			else r=mid-1;
		}
		lstans=a[l].v;
		printf("%d\n",lstans);
	}
	return 0;
}
posted @ 2018-11-18 20:35  AKMer  阅读(127)  评论(0编辑  收藏  举报