POJ2564:Edit Step Ladders

浅谈\(Trie\)https://www.cnblogs.com/AKMer/p/10444829.html

题目传送门:http://poj.org/problem?id=2564

\(f[i]\)表示从第\(i\)个字符串开始可以变换多长。

每次把当前字符串在\(Trie\)树上搜索,设\(dp(ID,u,len,bo)\)表示我把第\(ID\)个字符串在\(Trie\)树上搜索,到了\(u\)这个点,已经处理了\(len\)位,并且是否做过改动。

修改就走除了下一个字符以外的边继续搜,插入就枚举\(26\)条边依次去搜但是不加\(len\),删除就是再次访问当前节点不过让\(len=len+1\)

\(len\)等于字符串长度的时候和当前点表示的那一号字符串的\(f_{u}+1\)\(max\)即可。

答案就是\(f\)的最大值加一。

时间复杂度:\(O(n*len^2*26)\)

空间复杂度:\(O(n*len*26)\)

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn=25005;

int n=1,ans;
char s[maxn][20];
int f[maxn],Len[maxn];

struct Trie {
	int tot;
	int id[maxn*16];
	int son[maxn*16][26];

	void ins(int ID) {
		int pos=1,len=strlen(s[ID]+1);
		for(int i=1;i<=len;i++) {
			if(son[pos][s[ID][i]-'a'])
				pos=son[pos][s[ID][i]-'a'];
			else pos=son[pos][s[ID][i]-'a']=++tot;
		}
		id[pos]=ID;
	}

	void dp(int ID,int u,int len,int bo) {
		if(len==Len[ID]) {
			if(id[u]&&bo)return;
			if(id[u])f[ID]=max(f[ID],f[id[u]]+1);
			if(bo) {
				for(int i=0;i<26;i++)
					if(id[son[u][i]])f[ID]=max(f[ID],f[id[son[u][i]]]+1);
			}
			return;
		}
		int c=s[ID][len+1]-'a';
		if(son[u][c])dp(ID,son[u][c],len+1,bo);
		if(bo) {
			for(int i=0;i<26;i++) {
				dp(ID,son[u][i],len,0);
				if(i!=c)dp(ID,son[u][i],len+1,0);
			}
			dp(ID,u,len+1,0);
		}
	}
}T;

int main() {
	T.tot=1;
	while(~scanf("%s",s[n]+1))n++;
	for(int i=1;i<n;i++) {
		Len[i]=strlen(s[i]+1),T.dp(i,1,0,1);
		ans=max(ans,f[i]),T.ins(i);
	}
	printf("%d\n",ans+1);
	return 0;
}
posted @ 2019-02-27 21:03  AKMer  阅读(234)  评论(0编辑  收藏  举报