BZOJ3110:[ZJOI2013]K大数查询(整体二分版)
浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=3110
同BZOJ1901,不过是把单点修改区间询问改成区间修改区间询问罢了。
我怕会\(TLE\),就用了区间修改区间询问的树状数组。如果还不会这个的,可以去看看这篇博客。
时间复杂度:\(O(mlog^2n)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
using namespace std;
typedef long long ll;
#define low(i) ((i)&(-(i)))
const int maxn=5e4+5;
bool bo[maxn];
int ans[maxn];
int n,m,ans_cnt;
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct Oper {
int opt,l,r,k,id;
}p[maxn],tmp[maxn];
struct tree_array {
ll c[maxn];
void add(int pos,int v) {
if(!pos)return;
for(int i=pos;i<=n;i+=low(i))
c[i]+=v;
}
ll query(int pos) {
ll res=0;
for(int i=pos;i;i-=low(i))
res+=c[i];
return res;
}
}T1,T2;
ll ask(int pos) {
return 1ll*(pos+1)*T1.query(pos)-T2.query(pos);
}
void solve(int l,int r,int st,int ed) {
if(ed<st)return;
if(l==r) {
for(int i=st;i<=ed;i++)
if(p[i].id)ans[p[i].id]=l;
return;
}
int mid=(l+r)>>1,cnt=0;
for(int i=st;i<=ed;i++)
if(p[i].opt==1) {
if(p[i].k>mid) {
bo[i]=0;
T1.add(p[i].l,1),T1.add(p[i].r+1,-1);
T2.add(p[i].l,p[i].l),T2.add(p[i].r+1,-1-p[i].r);
}
else bo[i]=1,cnt++;
}
else {
ll res=ask(p[i].r)-ask(p[i].l-1);
if(res>=p[i].k)bo[i]=0;
else bo[i]=1,p[i].k-=res,cnt++;
}
for(int i=st;i<=ed;i++)
if(p[i].opt==1&&p[i].k>mid) {
T1.add(p[i].l,-1),T1.add(p[i].r+1,1);
T2.add(p[i].l,-p[i].l),T2.add(p[i].r+1,p[i].r+1);
}
int ED=st,ST=st+cnt;
for(int i=st;i<=ed;i++)
if(bo[i])tmp[ED++]=p[i];
else tmp[ST++]=p[i];
for(int i=st;i<=ed;i++)
p[i]=tmp[i];
solve(l,mid,st,ED-1),solve(mid+1,r,ED,ed);
}
int main() {
n=read(),m=read();
for(int i=1;i<=m;i++) {
p[i].opt=read(),p[i].l=read(),p[i].r=read(),p[i].k=read();
if(p[i].opt==2)p[i].id=++ans_cnt;
}
solve(1,n,1,m);
for(int i=1;i<=ans_cnt;i++)
printf("%d\n",ans[i]);
return 0;
}