POJ2442:Sequence

浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html

题目传送门:http://poj.org/problem?id=2442

我们先简化题意,假设只有两行。

那么显然,最小值是\(a_1+b_1\)。并且次小值集合是\(a_2+b_1,a_1+b_2\)

假设\(a_1+b_2\)是次小值,那么次次小值集合就是\(a_2+b_1,a_2+b_2,a_1+b_3\)

也就是说,当\(a_i+b_j\)成为当前最小值之后,\(a_{i+1}+b_j,a_i+b_{j+1}\)将会进入当前集合的次小值集合。我们用堆维护一下,每次取出最小值再把扩展出来的两个数扔回去就行了。

但是,\(a_2+b_2\)显然是可以通过\(a_1+b_2\)\(a_2+b_1\)扩展出来的,如果不去重的话显然状态是非常非常多的,那样空间时间都没法保证。

所以我们强行勒令\(a_i+b_j\)只能转移到\(a_i+b_{j+1}\),前提是\(a_i+b_j\)是由\(a_i+b_{j-1}\)扩展来的。

也就是说,假设现在有两个指针分别在第一行和第二行上移动,对于\(a_i+b_j\)必须满足\(i\)先移动\(j\)再移动然后到了这个地方。这样就不会有重复的状态了,也不会露掉中间值。

时间复杂度:\(O(mnlogn)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn=2e3+5;

int n,m;
int num1[maxn],num2[maxn],tmp[maxn];

int read() {
	int x=0,f=1;char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
	for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
	return x*f;
}

struct node {
	bool bo;
	int x,y;

	node() {}

	node(int _x,int _y,bool _bo) {
		x=_x,y=_y,bo=_bo;
	}

	bool operator<(const node &a)const {
		return num1[x]+num2[y]<num1[a.x]+num2[a.y];
	}
};

struct Heap {
	int tot;
	node tree[maxn];

	void ins(node v) {
		tree[++tot]=v;
		int pos=tot;
		while(pos>1) {
			if(tree[pos]<tree[pos>>1])
				swap(tree[pos],tree[pos>>1]),pos>>=1;
			else break;
		}
	}

	node pop() {
		node res=tree[1];
		tree[1]=tree[tot--];
		int pos=1,son=2;
		while(son<=tot) {
			if(son<tot&&tree[son|1]<tree[son])son|=1;
			if(tree[son]<tree[pos])
				swap(tree[son],tree[pos]),pos=son,son=pos<<1;
			else break;
		}
		return res;
	}
}T;

int main() {
	int TEST=read();
	while(TEST--) {
		m=read(),n=read();
		for(int i=1;i<=n;i++)
			num1[i]=read();
		sort(num1+1,num1+n+1);
		for(int i=1;i<m;i++) {
			for(int j=1;j<=n;j++)
				num2[j]=read();
			sort(num2+1,num2+n+1);T.tot=0;
			int cnt=0;T.ins(node(1,1,0));
			for(int j=1;j<=n;j++) {
				node res=T.pop();
				tmp[++cnt]=num1[res.x]+num2[res.y];
				T.ins(node(res.x,res.y+1,1));
				if(!res.bo)T.ins(node(res.x+1,res.y,0));
			}
			for(int j=1;j<=n;j++)
				num1[j]=tmp[j];
		}
		for(int i=1;i<=n;i++)
			printf("%d ",num1[i]);
		puts("");
	}
	return 0;
}
posted @ 2019-01-18 16:29  AKMer  阅读(170)  评论(0编辑  收藏  举报