BZOJ4364:[IOI2014]Wall
浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4364
似乎可以不用吉司机线段树的作法……因为只需要维护区间最大最小值,也只有区间取最大最小值操作,所以可以直接用普通的线段树延迟标记解决这道问题。只要把最大值标记和最小值标记之间的关系处理得当即可。
时间复杂度:\(O((n+m)logn)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=2e6+6,inf=1e9;
int n,m;
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct segmemt_tree {
int mx[maxn<<2],mn[maxn<<2];
int tagmx[maxn<<2],tagmn[maxn<<2];
void update(int p) {
mx[p]=max(mx[p<<1],mx[p<<1|1]);
mn[p]=min(mn[p<<1],mn[p<<1|1]);
}
void build(int p,int l,int r) {
tagmx[p]=-inf,tagmn[p]=inf;
if(l==r)return;
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
}
void Max_tag(int p,int v) {
mx[p]=max(mx[p],v),mn[p]=max(mn[p],v);
tagmx[p]=max(tagmx[p],v);tagmn[p]=max(tagmn[p],v);
}
void Min_tag(int p,int v) {
mx[p]=min(mx[p],v),mn[p]=min(mn[p],v);
tagmx[p]=min(tagmx[p],v),tagmn[p]=min(tagmn[p],v);
}
void push_down(int p) {
if(tagmx[p]!=-inf) {
Max_tag(p<<1,tagmx[p]);
Max_tag(p<<1|1,tagmx[p]);
tagmx[p]=-inf;
}
if(tagmn[p]!=inf) {
Min_tag(p<<1,tagmn[p]);
Min_tag(p<<1|1,tagmn[p]);
tagmn[p]=inf;
}
}
void Max(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Max_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Max(p<<1,l,mid,L,R,v);
if(R>mid)Max(p<<1|1,mid+1,r,L,R,v);
update(p);
}
void Min(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Min_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Min(p<<1,l,mid,L,R,v);
if(R>mid)Min(p<<1|1,mid+1,r,L,R,v);
update(p);
}
void print(int p,int l,int r) {
if(l==r) {printf("%d\n",mx[p]);return;}
int mid=(l+r)>>1;push_down(p);
print(p<<1,l,mid),print(p<<1|1,mid+1,r);
}
}T;
int main() {
n=read(),m=read();T.build(1,1,n);
for(int i=1;i<=m;i++) {
int opt=read(),l=read()+1,r=read()+1,v=read();
if(opt==1)T.Max(1,1,n,l,r,v);
else T.Min(1,1,n,l,r,v);
}T.print(1,1,n);
return 0;
}