AtCoder Grand Contest 028 A:Two Abbreviations

题目传送门:https://agc028.contest.atcoder.jp/tasks/agc028_a

题目翻译

给你两个串\(s\)\(t\),长度分别为\(n,m\)。问你存不存在一个串长度为\(l\)\(l\)\(n,m\)的公倍数,并且满足下面的条件:

\(1\)、对于第\(1\)位、第\(l/n+1\)位,第\(2*l/n+1\)位……第\((n-1)*l/n+1\)位的字符串依次拼接等于\(s\)

\(2\)、对于第\(1\)位、第\(l/m+1\)位,第\(2*l/m+1\)位……第\((m-1)*l/m+1\)位的字符串依次拼接等于\(t\)

题解

对于要求的串,真正有关系的位置总和不会超过\(n,m\)\(lcm\)。所以我们只需要判断对于某一位,满足它等于\(a*l/n+1\)也等于\(b*l/n+1\),然后看\(s[a]\)\(t[b]\)是否相等即可。如果全部都满足条件,那么就输出\(lcm\),否则输出\(-1\)

时间复杂度:\(O(n+m)\)

空间复杂度:\(O(n+m)\)

代码如下:

#include <map>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;

const int maxn=1e5+5;

ll l;int n,m;
map<int,int>good;
char s[maxn],t[maxn];

int read() {
	int x=0,f=1;char ch=getchar();
	for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
	for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
	return x*f;
}

int gcd(int a,int b) {
	if(!b)return a;
	return gcd(b,a%b);
}

int main() {
	n=read(),m=read();
	scanf("%s%s",s,t);
	l=1ll*n*m/gcd(n,m);
	for(int i=0;i<n;i++)
		good[i*(l/n)+1]=s[i];
	for(int i=0;i<m;i++)
		if(good[i*(l/m)+1]&&good[i*(l/m)+1]!=t[i]) {
			puts("-1");exit(0);
		}
	printf("%lld\n",l);
	return 0;
}
posted @ 2018-12-07 21:29  AKMer  阅读(208)  评论(0编辑  收藏  举报