bzoj4367: [IOI2014]holiday假期

首先肯定是向一边走一段(不走也行),然后回到原点,然后再向另一边走

算四个数组,分别表示向左还是向右,回还是不回,耗费i的时间最多游览的景点数

假如是向左走不回来(其他同理),我们可以枚举向左走到的端点,然后在这段区间中选择剩下时间数目的前k大值,主席树做到logn

朴素是O(T*n)的,但是可以发现有决策单调性,时间增加,走到的端点不会往回

但是值得注意的是,并不是说往前拓展就一定会更优,可能是走几步才会到达更优的决策点,这意味着不能够直接O(n)扫

用类似整体二分的思想分治,二分时间,然后枚举决策点区间找最优,根据当前决策点依单调性保证去除没用的点就好

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn=310000;

int a[maxn],lslen;LL ls[maxn];
struct trnode
{
    int lc,rc,c;LL s;
}tr[maxn*8];int trlen,rt[maxn];
int maketree(int now,int l,int r,int p)
{
    if(now==0)
    {
        now=++trlen;
        tr[now].lc=tr[now].rc=0;
        tr[now].c=0;
    }
    tr[now].c++;
    tr[now].s+=ls[p];
    if(l<r)
    {
        int mid=(l+r)/2;
        if(p<=mid)tr[now].lc=maketree(tr[now].lc,l,mid,p);
        else       tr[now].rc=maketree(tr[now].rc,mid+1,r,p);
    }
    return now;
}
int merge(int x,int y)
{
    if(x==0||y==0)return x+y;
    tr[x].c+=tr[y].c;
    tr[x].s+=tr[y].s;
    tr[x].lc=merge(tr[x].lc,tr[y].lc);
    tr[x].rc=merge(tr[x].rc,tr[y].rc);
    return x;
}
LL getksum(int x,int y,int l,int r,int k)
{
    int c=tr[y].c-tr[x].c;
    if(c<=k)return tr[y].s-tr[x].s;
    if(l==r)return LL(k)*ls[l];
    
    int mid=(l+r)/2;
    c=tr[tr[y].rc].c-tr[tr[x].rc].c;
    
    if(c==k)return tr[tr[y].rc].s-tr[tr[x].rc].s;
    else if(k<c)return getksum(tr[x].rc,tr[y].rc,mid+1,r,k);
    else         return tr[tr[y].rc].s-tr[tr[x].rc].s+getksum(tr[x].lc,tr[y].lc,l,mid,k-c);
}
LL qwer(int x,int y,int k)
{
    if(x>y)swap(x,y);
    return getksum(rt[x-1],rt[y],1,lslen,k);
}

//-------------------------------------getksum------------------------------------------------

int ST;
LL calc(int t,int p,int w)
{
    if(abs(ST-p)*w>=t)return 0;
    return qwer(p,ST,t-abs(ST-p)*w);
}
LL f[4][maxn];int w;
void solve(int l,int r,int st,int ed)
{
    if(l>r)return ;
    
    int mid=(l+r)/2,u;
    f[w][mid]=calc(mid,st,w%2+1),u=st;
    for(int p=st+1;p<=ed;p++)
    {
        LL d=calc(mid,p,w%2+1);
        if(f[w][mid]<d)f[w][mid]=d,u=p;
    }
    
    if(w<=1) solve(l,mid-1,u,ed), solve(mid+1,r,st,u);
    else      solve(l,mid-1,st,u), solve(mid+1,r,u,ed);
}

int main()
{
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    int n,m;
    scanf("%d%d%d",&n,&ST,&m);ST++;
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]),ls[++lslen]=a[i];
    sort(ls+1,ls+lslen+1);
    lslen=unique(ls+1,ls+lslen+1)-ls-1;
    for(int i=1;i<=n;i++)
        a[i]=lower_bound(ls+1,ls+lslen+1,a[i])-ls;
    
    for(int i=1;i<=n;i++)
    {
        rt[i]=maketree(rt[i],1,lslen,a[i]);
        rt[i]=merge(rt[i],rt[i-1]);
    }
    
    w=0,solve(1,m,1,ST);
    w=1,solve(1,m,1,ST);
    ST++;
    if(ST!=n+1)
    {
        w=2,solve(1,m-1,ST,n);
        w=3,solve(1,m-2,ST,n);
    }
        
    LL ans=0;
    for(int i=0;i<=m;i++)
        ans=max(ans,f[0][i]+f[3][max(0,m-i-2)]),
        ans=max(ans,f[1][i]+f[2][max(0,m-i-1)]);
        
    printf("%lld\n",ans);
    
    return 0;
}

 

posted @ 2019-01-21 11:57  AKCqhzdy  阅读(148)  评论(0编辑  收藏  举报