bzoj4503: 两个串
我又变成sb了
首先通过%可以得到一个这样的柿子:
设s1是模版串,s2是匹配串,j表示模版串以j为起始的子串
fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[i]-s1[j+i])^2*s2[i]
当fj=0时j是一个解。
既然要fft,这个加号很不爽,我们把s2翻转:
fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[s2len-i]-s1[j+i])^2*s2[s2len-i]
改为枚举s2len-i
fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[i]-s1[j-i+s2len])^2*s2[i]
这个时候发现s2len没法消啊,改一下定义,j表示以j为结尾的子串
fj(s2len-1<=j<=s1len-1) =sigema(i=0~s2len-1) (s2[i]-s1[j-i])^2*s2[i]
把它拆开跑三次fft就可以了。
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const double pi=acos(-1.0); struct complex { double r,i; complex(){} complex(double R,double I){r=R,i=I;} friend complex operator +(complex x,complex y){return complex(x.r+y.r,x.i+y.i);} friend complex operator -(complex x,complex y){return complex(x.r-y.r,x.i-y.i);} friend complex operator *(complex x,complex y){return complex(x.r*y.r-x.i*y.i,x.r*y.i+x.i*y.r);} }A[410000],B[410000],C[410000]; int Re[410000]; void fft(complex *a,int n,int op) { for(int i=0;i<n;i++) if(i<Re[i])swap(a[i],a[Re[i]]); for(int i=1;i<n;i<<=1) { complex wn(cos(pi/i),sin(op*pi/i)); for(int j=0;j<n;j+=(i<<1)) { complex w(1,0); for(int k=0;k<i;k++,w=w*wn) { complex t1=a[j+k],t2=a[j+k+i]*w; a[j+k]=t1+t2;a[j+k+i]=t1-t2; } } } } char ss[410000]; int s1len,s1[410000],s2len,s2[410000],f[410000]; int aslen,as[410000]; int main() { scanf("%s",ss);s1len=strlen(ss); for(int i=0;i<s1len;i++) if('a'<=ss[i]&&ss[i]<='z')s1[i]=ss[i]-'a'+1; else s1[i]=0; scanf("%s",ss);s2len=strlen(ss); for(int i=0;i<s2len;i++) if('a'<=ss[i]&&ss[i]<='z')s2[s2len-1-i]=ss[i]-'a'+1; else s2[s2len-1-i]=0; //~~~~~~~~~~~~~~~~~~~~read~~~~~~~~~~~~~~~~~~~~~~~~~~~ int n,m=s1len+s2len-2,L=0; for(n=1;n<=m;n*=2)L++; for(int i=1;i<=n;i++)Re[i]=(Re[i>>1]>>1)|((i&1)<<(L-1)); memset(f,0,sizeof(f)); //~~~~~~~~~~~~~~~~~~~~~init~~~~~~~~~~~~~~~~~~~~~~~~~~ for(int i=0;i<=n;i++) A[i].r=s2[i]*s2[i]*s2[i],B[i].r=1; fft(A,n,1),fft(B,n,1); for(int i=0;i<n;i++)C[i]=A[i]*B[i]; fft(C,n,-1); for(int i=s2len-1;i<s1len;i++)f[i]+=int(C[i].r/n+0.5); memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); for(int i=0;i<=n;i++) A[i].r=2*s2[i]*s2[i],B[i].r=s1[i]; fft(A,n,1),fft(B,n,1); for(int i=0;i<n;i++)C[i]=A[i]*B[i]; fft(C,n,-1); for(int i=s2len-1;i<s1len;i++)f[i]-=int(C[i].r/n+0.5); memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); for(int i=0;i<=n;i++) A[i].r=s2[i],B[i].r=s1[i]*s1[i]; fft(A,n,1),fft(B,n,1); for(int i=0;i<n;i++)C[i]=A[i]*B[i]; fft(C,n,-1); for(int i=s2len-1;i<s1len;i++)f[i]+=int(C[i].r/n+0.5); aslen=0; for(int i=s2len-1;i<s1len;i++) if(f[i]==0)as[++aslen]=i-s2len+1; printf("%d\n",aslen); for(int i=1;i<=aslen;i++)printf("%d\n",as[i]); return 0; }
pain and happy in the cruel world.