623

 


 

当时写第一道题时, 只想到了40分的做法, 就是枚举每一种情况, 最后check一遍, 时间复杂度应该是(n * !n), 最后看了题解, 是一道树形dp, f[i][0] 表示不选第i个节点, f[i][1]表示选i节点, 则显然有

用邻接表就能做到O(n) 的时空复杂度。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 5e5 + 100;
const int MAXM = 3e3 + 10;
const double eps = 1e-5;

template < typename T > inline void read(T &x) {
    x = 0; T ff = 1, ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') ff = -1;
        ch = getchar();
    }
    while(isdigit(ch)) {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= ff;
}

template < typename T > inline void write(T x) {
    if(x < 0) putchar('-'), x = -x;
    if(x > 9) write(x / 10);
    putchar(x % 10 + '0');
}

int n, lin[MAXN], tot = 0, ans, f[MAXN][2], vis[MAXN];
struct edge {
    int y, next;
}e[MAXN];

inline void add(int xx, int yy) {
    e[++tot].y = yy;
    e[tot].next = lin[xx];
    lin[xx] = tot;
}

void dfs(int x) {
    f[x][1] = 1, f[x][0] = 0;
    vis[x] = true;
    for(int i = lin[x], y; i; i = e[i].next) {
        if(vis[y = e[i].y]) continue;
        dfs(y);
        f[x][0] += max(f[y][0], f[y][1]);
        f[x][1] += f[y][0];
    }
}

int main() {    
    freopen("a.in", "r", stdin);
    freopen("a.out", "w", stdout);            
    read(n);
    for(int i = 1; i < n; ++i) {
        int u, v;
        read(u); read(v);
        add(u, v);
        add(v, u);
    }            
    dfs(1);
    ans = max(f[1][1], f[1][0]);    
    write(ans);
    return 0;
} 
View Code

合并石子, 一个区间dp模板

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 5e5 + 100;
const int MAXM = 1e3 + 10;

template < typename T > inline void read(T &x) {
    x = 0; T ff = 1, ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') ff = -1;
        ch = getchar();
    }
    while(isdigit(ch)) {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= ff;
}

template < typename T > inline void write(T x) {
    if(x < 0) putchar('-'), x = -x;
    if(x > 9) write(x / 10);
    putchar(x % 10 + '0');
}

int n, ans, a[MAXM], sum[MAXM], f[MAXM][MAXM];

int main() {
    freopen("b.in", "r", stdin);
    freopen("b.out", "w", stdout);
    read(n);
    for(int i = 1; i <= n; ++i) {
        read(a[i]);
        sum[i] = sum[i - 1] + a[i];
    }
    for(int i = n + 1; i <= 2 * n; ++i) {
        a[i] = a[i - n];
        sum[i] = sum[i - 1] + a[i];
    }
    for(int len = 2; len <= n; ++len) {
        for(int l = 1; l <= 2 * n - len + 1; ++l) {
            int r = l + len - 1;
            for(int i = l; i <= r; ++i) {
                f[l][r] = max(f[l][r], f[l][i] + f[i + 1][r]);
            }
            f[l][r] += sum[r] - sum[l - 1];
        }
    }
    for(int i = 1; i <= n; ++i) {
        ans = max(ans, f[i][i + n - 1]);
    }
    write(ans);
    return 0; 
}
View Code


 

暴力很好想, 全排列再check一下,时间复杂度为(n * !n); 正解是状态压缩dp, 用二进制2n枚举所选的点, f[i][j] 表示当选取方案为i时, 以j结尾的方案数, 首先枚举每一种方案, 在枚举每个点j作为结尾, 如果该点在方案中, 则枚举能够与该点相邻的点k, 如果该相邻的点也在此方案中, 那么f[i][j] 就可以由f[i - (1 << j)][k] 更新过来, 即在i中将j这个点剔除, 再以k为节点的方案数, 最后将枚举所有点时, 即(1 <<n) - 1, 以所有点为结尾的方案相加, 就是最终答案;

 

 

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 5e5 + 100;
const int MAXM = 3e3 + 10;

template < typename T > inline void read(T &x) {
    x = 0; T ff = 1, ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') ff = -1;
        ch = getchar();
    }
    while(isdigit(ch)) {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= ff;
}

template < typename T > inline void write(T x) {
    if(x < 0) putchar('-'), x = -x;
    if(x > 9) write(x / 10);
    putchar(x % 10 + '0');
}

int n, k, a[MAXN];
vector < int > q[20];
ll ans, f[1 << 17][20];


int main() {
    freopen("c.in", "r", stdin);
    freopen("c.out", "w", stdout);
    read(n); read(k);
    for(int i = 0; i < n; ++i) {
        read(a[i]);
        f[1 << i][i] = 1;
    }
    for(int i = 0; i < n; ++i) {
        for(int j = i + 1; j < n; ++j) {
            if(abs(a[i] - a[j]) > k) {
                q[i].push_back(j);
                q[j].push_back(i);
            }
        }
    }
    for(int i = 0; i < 1 << n; ++i) {
        for(int j = 0; j < n; ++j) {
            if((i >> j) & 1) {
                for(int l = 0; l < q[j].size(); ++l) {
                    if((i >> q[j][l]) & 1) {
                        f[i][j] += f[i - (1 << j)][q[j][l]];
                    }
                }
            }
        }
    }
    for(int i = 0; i < n; ++i) {
        ans += f[(1 << n) - 1][i];
    }
    write(ans);
    return 0;
}
View Code

 

posted @ 2019-06-24 13:56  海边微风起  阅读(1108)  评论(0编辑  收藏  举报