分层图
先看一道裸题
分层图的典型应用,有K条免费边,除了原图外再建K层图。然后对于从每个点出的每一条边,连一条从此点到这条边终点所对应的上一层的点,边权为零,从一层到下一层相当于走了一条免费边。由于不需要走完所有的免费边,所以应取所有层的终点的最短路的最小值。
如图所示:
这里只画出来0号节点的免费边
#include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f #define MAXN 1000010 #define MAXM 5010 inline int read() { int x = 0,ff = 1;char ch = getchar(); while(!isdigit(ch)) { if(ch == '-') ff = -1; ch = getchar(); } while(isdigit(ch)) { x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar(); } return x * ff; } int n,m,k,dis[MAXN],vis[MAXN],ans = INF; int lin[MAXN],tot = 0; struct edge { int y,v,next; }e[MAXN]; void add(int xx,int yy,int vv) { e[++tot].y = yy; e[tot].v = vv; e[tot].next = lin[xx]; lin[xx] = tot; } void SPFA() { memset(dis,0x3f,sizeof(dis)); memset(vis,false,sizeof(vis)); queue < int > q; q.push(1); dis[1] = 0; vis[1] = true; while(!q.empty()) { int x = q.front(); q.pop(); vis[x] = false; for(int i = lin[x],y;i;i = e[i].next) { if(dis[y = e[i].y] > dis[x] + e[i].v) { dis[y] = dis[x] + e[i].v; if(!vis[y]) { vis[y] = true; q.push(y); } } } } } int main() { n = read(); m = read(); k = read(); for(int i = 1;i <= m;++i) { int x,y,v; x = read(); y = read(); v = read(); for(int j = 0;j <= k;++j) { add(x + n * j,y + n * j,v); add(y + n * j,x + n * j,v); if(j != k) { add(x + n * j,y + n * (j + 1),0); add(y + n * j,x + n * (j + 1),0); } } } SPFA(); for(int i = 1;i <= (k + 1);++i) ans = min(ans,dis[n * i]); printf("%d\n",ans); system("PAUSE"); return 0; }