Codeforces Round #772 (Div. 2)

Codeforces Round #772 (Div. 2)

VP

A B C
3min 12min 52min
+4

排名:rk3893
基准分:\(\color{ForestGreen}{1362}\)

从天选到天崩

A

\(\color{Gray}{800}\)

CF1635A Min Or Sum

简要分析可知,其实答案就是对于所有数取或运算和(具体懒得管)

时间复杂度:\(O(n)\)

int n,x;
void work(){
  int ans=0;cin>>n;
  L(i,1,n) cin>>x,ans|=x;
  cout<<ans<<'\n';
}

B

\(\color{Gray}{800}\)

CF1635B Avoid Local Maximums

就是个贪心,如果能左右两个一起解决就一起干。

构造起来不难。

int n,c;
const int N=2e5+100,INF=1e9;
int a[N];bool f[N];
void work(){
  cin>>n;L(i,1,n) cin>>a[i];
  me(f,0);vector <int>p;c=0;
  L(i,2,n-1) if(a[i]>a[i-1]&&a[i]>a[i+1]) 
    p.push_back(i),f[i]=1;
  for(int i=0;i<p.size();i++){
    if(p[i]==p[i+1]-2){
      a[p[i]+1]=max(a[p[i]],a[p[i+1]]);
      i++;c++;
    }else a[p[i]-1]=a[p[i]],c++;
  }cout<<c<<'\n';
  L(i,1,n) cout<<a[i]<<" \n"[i==n];
}

C

\(\color{ForestGreen}{1200}\)

CF1635C Differential Sorting

先想几个特殊情况:

  • 如果 \(a_n,a_{n-1}\) 之间不满足,则必然无解。
  • 如果 \(a_n<0\),则原序列必须单减,否则无解。

至于证明,可以看官方题解
又懒得证

时间复杂度:\(O(n)\)

#define F(i) (i).first
#define S(i) (i).second
#define pb push_back
int n;
const int N=2e5+100,INF=1e9;
int a[N],sum[N];bool f[N];
vector<pair<pi,int>>ans;
void work(){
  cin>>n;L(i,1,n) cin>>a[i];a[n+1]=INF;
  if(a[n]<a[n-1]) return cout<<-1<<'\n',void();
  L(i,1,n) f[i]=0;
  ans.clear();int flag=0;
  int k=0;
  L(i,1,n-1) if(a[i]>a[i+1]) f[i]=1,flag++;
  if(a[n]<0){
    bool t=0;L(i,1,n-1)
      if(a[i]>a[i+1]){t=1;break;}
    return cout<<(t?-1:0)<<'\n',void();
  }if(!flag) return cout<<0<<'\n',void();
  L(i,1,n-2) ans.pb({{i,n-1},n});
  cout<<(int)ans.size()<<'\n';
  for(auto i:ans)
    cout<<F(F(i))<<' '<<S(F(i))<<' '<<S(i)<<'\n';
}

四次法师,代码巨丑。

D

\(\color{Blue}{1800}\)

CF1635D Infinite Set

在二进制下考虑问题。

对于数 \(x\)\(x \times 2 + 1\) 相当于 \(x<<1|1\)\(x \times 4\) 相当于 \(x<<2\)

尝试推导每个数的贡献值。
\(f_i\) 表示用上述方法推得能产生的 \(i\) 位数的个数。
很容易想到转移 \(f_i = \begin{cases}1&i\leqslant1\\f_{i-1}+f_{i-2}&x>1\end{cases}\)

其实就是斐波那契数列。
直接统计显然是 \(O(n)\),这个部分可以用前缀和优化到 \(O(1)\)

之后考虑可能出现的重复计算贡献的情况。
其实出现重复就是某个数会在另一个数在递推时产生。
对于这种情况,我们每循环一个数就丢进 std::set() 中,之后的数如果在拆分时的“子集”在 std::set() 中出现,跳过即可。

时间复杂度:\(O(n \log_2 A \log_2 n + p)\)

int n,p,ans;
const int N=2e5+100,mod=1e9+7;
int f[N],a[N];set<int>s;
bool check(int x){
  bool f=1;
  while(x>0){
    if(s.count(x)){f=0;break;}
    if(x&1) x>>=1;
    else if(x%4==0) x>>=2;
    else break;
  }return f;
}void work(){
  cin>>n>>p;f[0]=1;
  L(i,1,p) 
    f[i]=(f[i-1]+(i>1?f[i-2]:0))%mod;
  L(i,1,p)
    (f[i]+=f[i-1])%=mod;
  L(i,1,n) cin>>a[i];
  sort(a+1,a+1+n);
  L(i,1,n) if(check(a[i])){
    s.insert(a[i]);
    int g=__lg(a[i])+1;
    if(g<=p) (ans+=f[p-g])%=mod;
  }cout<<ans;
}

E

\(\color{Orange}{2200}\)

CF1635E Cars

转化下题意,相当于每个限制是两车方向必须相反,且存在位置相对关系。
可以先连边,跑二分图染色,判断是否有解。

如果有解按照每辆车的朝向和已知信息建新图跑拓扑排序,分配每辆车的位置。
注意拓扑排序之后要判断车的位置是否合法,如果重叠也是无解。

时间复杂度:\(O(n+m)\)

#define L(i,j,k) for(int i=(j);i<=(k);i++)
int n,m;bool tp;
const int N=5e5+100,mod=1e9+7;
int cl[N],o[N],u[N],v[N],ans[N],in[N];
vector<int>g[N];queue<int>q;
void dfs(int u,int c){
  cl[u]=c;
  for(int v:g[u]){
    if(cl[v]==cl[u]){tp=1;return ;}
    if(!cl[v]) dfs(v,-c);
  }
}void top(){
  int tot=0;
  while(!q.empty()){
    int u=q.front();q.pop();ans[u]=++tot;
    for(int v:g[u]) if(!(--in[v])) q.push(v);
  }
}void work(){
  cin>>n>>m;
  L(i,1,m){
    cin>>o[i]>>u[i]>>v[i];
    g[u[i]].pb(v[i]);g[v[i]].pb(u[i]);
  }L(i,1,n) if(!cl[i]) dfs(i,1);
  if(tp) return cout<<"NO",0;
  L(i,1,n) g[i].clear();
  L(i,1,m)
    if((o[i]==2&&cl[u[i]]==-1)||(o[i]==1&&cl[u[i]]==1)) 
      g[u[i]].pb(v[i]),in[v[i]]++;
    else g[v[i]].pb(u[i]),in[u[i]]++;
  L(i,1,n) if(!in[i]) q.push(i);
  top();map<int,int>mp;L(i,1,n) mp[ans[i]]++;
  L(i,1,n) if(mp[ans[i]]>1) return cout<<"NO",0;
  cout<<"YES"<<'\n';
  L(i,1,n) cout<<(cl[i]==1?'L':'R')<<' '<<ans[i]<<'\n';
}

posted @ 2022-08-25 06:42  AIskeleton  阅读(19)  评论(0编辑  收藏  举报