spark--spark9.0安装【1】
spark:
Spark是下一代In Memory MR计算框架,性能上有数量级提升,同时支持Interactive Query、流计算、图计算等。支持java、scala
适用范围:
1.高性能机器学习
2.即时计算
下载:
安装:
spark纯粹模式:
这种模式就是一个单一的spark集群或者单spark测试机抑或开发机。
1.在集群各个节点安装编译好的spark版本,也可以自己编译安装,自己编译点击此处。在conf/slaves中需要将需要使用的worker的hostname包含进去,和hadoop的slaves文件配置类型。
2.启动spark
./sbin/start-master.sh
3.启动后master会首先输出
spark://HOST:PORT
的url,也可以在mater的 http://localhost:8080上找到这个url的。4.使用如下的命令启动worker并连接到master
./bin/spark-class org.apache.spark.deploy.worker.Worker spark://IP:PORT
5.在master上用http://localhost:8080这个地址对集群进行监控
6.又和hadoop类似,spark集群需要无密码访问的ssh
7.使用在
SPARK_HOME/bin的如下脚本对spark集群进行管理:
sbin/start-master.sh
- 启动master实例.sbin/start-slaves.sh
- 启动在conf/slaves文件里的worker实例
.sbin/start-all.sh
-启动整个集群.sbin/stop-master.sh
- 停止通过bin/start-master.sh
脚本启动的实例.sbin/stop-slaves.sh
- 停止通过bin/start-slaves.sh脚本启动的实例
.sbin/stop-all.sh
- 停止整个集群.
Environment Variable | Meaning |
---|---|
SPARK_MASTER_IP |
Bind the master to a specific IP address, for example a public one. |
SPARK_MASTER_PORT |
Start the master on a different port (default: 7077). |
SPARK_MASTER_WEBUI_PORT |
Port for the master web UI (default: 8080). |
SPARK_WORKER_PORT |
Start the Spark worker on a specific port (default: random). |
SPARK_WORKER_DIR |
Directory to run applications in, which will include both logs and scratch space (default: SPARK_HOME/work). |
SPARK_WORKER_CORES |
Total number of cores to allow Spark applications to use on the machine (default: all available cores). |
SPARK_WORKER_MEMORY |
Total amount of memory to allow Spark applications to use on the machine, e.g. 1000m , 2g (default:
total memory minus 1 GB); note that each application's individual memory is configured using its spark.executor.memory property. |
SPARK_WORKER_WEBUI_PORT |
Port for the worker web UI (default: 8081). |
SPARK_WORKER_INSTANCES |
Number of worker instances to run on each machine (default: 1). You can make this more than 1 if you have have very large machines and would like multiple Spark worker processes. If you do set this, make sure to also set SPARK_WORKER_CORES explicitly
to limit the cores per worker, or else each worker will try to use all the cores. |
SPARK_DAEMON_MEMORY |
Memory to allocate to the Spark master and worker daemons themselves (default: 512m). |
SPARK_DAEMON_JAVA_OPTS |
JVM options for the Spark master and worker daemons themselves (default: none). |