[计算几何][圆反演] 2019 ICPC区域赛沈阳站E.Capture Stars
题目大意
题目求与两圆相切的虚线圆最多能覆盖多少给定点。
大圆小圆圆心均在正向x轴上且内切在坐标轴原点,因此大圆圆心\((R,0)\),小圆圆心\((r,0)\)。
题解
Code
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
using namespace std;
#define RG register int
#define LL long long
const double eps = 1e-8;
int sgn(double x){
if(fabs(x)<eps)return 0;
if(x<0)return -1;
else return 1;
}
inline double sqr(double x){return x*x;}
struct Point{double x,y;};
struct Node{int Value;double y;};
Point Data[10010];
vector<Node> Sum;
int T,N;LL R,r;
bool cmp(Node A,Node B){
if(sgn(A.y-B.y)==0) return A.Value>B.Value;
return A.y<B.y;
}
int main(){
scanf("%d",&T);
while(T--){
Sum.clear();
scanf("%d%lld%lld",&N,&R,&r);
double mid=(double)R+(double)(R*R)/(double)r;
double rr=(double)(R*R)/(double)r-(double)R;
for(RG i=1;i<=N;++i){
LL x,y;scanf("%lld%lld",&x,&y);
Data[i].x=(double)(4LL*R*R*x)/(double)(x*x+y*y);
Data[i].y=(double)(4LL*R*R*y)/(double)(x*x+y*y);
//点的反演
if(sgn(fabs(Data[i].x-mid)-rr)==0){
Sum.push_back((Node){1,Data[i].y});
Sum.push_back((Node){-1,Data[i].y});
}
else if(sgn(fabs(Data[i].x-mid)-rr)<0){
double h=sqrt(sqr(rr)-sqr(Data[i].x-mid));
Sum.push_back((Node){-1,Data[i].y+h});
Sum.push_back((Node){1,Data[i].y-h});
}
else continue;
}
int Ans=0;
sort(Sum.begin(),Sum.end(),cmp);
int Len=Sum.size();
int temp=0;
for(RG i=0;i<Len;++i){
temp+=Sum[i].Value;
Ans=max(Ans,temp);
}
printf("%d\n",Ans);
}
return 0;
}