hdu1159

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 43355    Accepted Submission(s): 20013


Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 

 

Sample Input
abcfbc abfcab
programming contest
abcd mnp
 
Sample Output
4
2
0
 
分析:动态规划。c[i][j]记录"x0,x1, ...,xn-2"与"y0, y1, ..., yn-2"的最长公共子序列的长度,
递推公式如下:
复制代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char a[2000],b[2000];
int dp[1000][1000];
int main()
{
    while(scanf("%s%s",a,b)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        int N=strlen(a),M=strlen(b);
        for(int i=0;i<N;i++)
        {
            for(int j=0;j<M;j++)
            if(a[i]==b[j]) dp[i+1][j+1]=dp[i][j]+1;
            else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
        }
        printf("%d\n",dp[N][M]);
    }
    return 0;
}
View Code
复制代码

 

 
posted @   ACRykl  阅读(128)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示