hdu1003(最大连续子列和 )
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 268751 Accepted Submission(s): 63871
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
分析:动态规划。考虑数a[i]的决策,有两种情况:1.连续子列a[k]...a[i-1]的和加上a[i],
2.a[i]为一个新子列的开端,
令dp[i]为以a[i]结尾的最大连续子列和,那么dp[i]=max(dp[i-1]+a[i],a[i]);
化简即if(dp[i-1]<0) dp[i]=a[i];else dp[i]=dp[i-1]+a[i];
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int a[200000]; int dp[200000]; int main() { int T,N,cas=0; scanf("%d",&T); while(T--) { if(cas) printf("\n"); scanf("%d",&N); for(int i=0;i<N;i++) scanf("%d",&a[i]); memset(dp,0,sizeof(dp)); dp[0]=a[0]; int ans=a[0],l=0,r=0,cur=0; for(int i=1;i<N;i++) { if(dp[i-1]<0) {cur=i;dp[i]=a[i];} else dp[i]=dp[i-1]+a[i]; if(ans<dp[i]) { l=cur; ans=dp[i]; r=i; } } printf("Case %d:\n%d %d %d\n",++cas,ans,l+1,r+1); } return 0; }
作者:ACRykl —— O ever youthful,O ever weeping!
出处:http://www.cnblogs.com/ACRykl/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。