Maximum Sum
Maximum Sum
Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64uDescription
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 | −2 | −7 | 0 |
9 | 2 | −6 | 2 |
−4 | 1 | −4 | 1 |
−1 | 8 | 0 | −2 |
is in the lower-left-hand corner and has the sum of 15.
Input
The input consists of an N × N array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N 2 integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].
Output
The output is the sum of the maximal sub-rectangle.
Sample Input
input | output |
---|---|
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 |
15 |
Dp:
因为所求之和为矩阵和,所以必须满足行数相邻,每行起点终点相同,即需要构造dp[i][j][k],表示矩阵行数以终点为i,以j为起点,k为终点的矩阵最大和,sum值记录该i行起点为for(k--),终点为k的矩阵和。当然同样可以枚举以k为起点的矩阵和,同理。
复杂度O(n3);
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> const int INF = 0x3f3f3f3f; using namespace std; int a[105][105]; int dp[105][105][105]; int main(){ int n; scanf("%d", &n); for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ scanf("%d", &a[i][j]); } } int ans = -INF; for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++){ int sum = 0; for(int k = j; k >= 1; k--)//枚举以k为终点;//(for(int k = j; k <= n; j++)//这是枚举k为起点;)
{ sum += a[i][k];//sum值记录第i行以k为终点的矩阵和; dp[i][j][k] = max(sum,sum+ dp[i-1][j][k]); ans = max(ans, dp[i][j][k]); } } } printf("%d", ans); return 0; }