Maximum Sum

Maximum Sum

Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 −2 −7 0
9 2 −6 2
−4 1 −4 1
−1 8 0 −2
is in the lower-left-hand corner and has the sum of 15.

Input

The input consists of an N ×  N array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N 2 integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].

Output

The output is the sum of the maximal sub-rectangle.

Sample Input

inputoutput
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
15

Dp:

   因为所求之和为矩阵和,所以必须满足行数相邻,每行起点终点相同,即需要构造dp[i][j][k],表示矩阵行数以终点为i,以j为起点,k为终点的矩阵最大和,sum值记录该i行起点为for(k--),终点为k的矩阵和。当然同样可以枚举以k为起点的矩阵和,同理。

   复杂度O(n3);

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
const int INF = 0x3f3f3f3f;
using namespace std;
int a[105][105];
int dp[105][105][105];
int main(){
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            scanf("%d", &a[i][j]);
        }
    }
    int ans = -INF;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            int sum = 0;
            for(int k = j; k >= 1; k--)//枚举以k为终点;//(for(int k = j; k <= n; j++)//这是枚举k为起点;)
        { sum
+= a[i][k];//sum值记录第i行以k为终点的矩阵和; dp[i][j][k] = max(sum,sum+ dp[i-1][j][k]); ans = max(ans, dp[i][j][k]); } } } printf("%d", ans); return 0; }

 

 
posted @ 2015-10-22 13:12  Tobu  阅读(184)  评论(0编辑  收藏  举报