K-based Numbers
K-based Numbers
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64uDescription
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
- 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
Input
The numbers N and K in decimal notation separated by the line break.
Output
The result in decimal notation.
Sample Input
input | output |
---|---|
2 10 |
90 |
例如:n = 3;
dp[3] =
1, 2, 3 + (1, 2, 3 + 0, 1, 2, 3); k*dp[2];
+
10, 20, 30 + 1, 2, 3; k*dp[1];
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int dp[15]; int main(){ int n, k; scanf("%d%d", &n, &k); dp[1] = k-1; dp[2] = k*(k-1); for(int i = 3; i <= n; i++){ dp[i] = (k-1)*(dp[i-1] + dp[i-2]); } printf("%d\n",dp[n]); return 0; }