LCS

LCS

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 305    Accepted Submission(s): 146


Problem Description

You are given two sequence {a1,a2,...,an} and {b1,b2,...,bn}. Both sequences are permutation of {1,2,...,n}. You are going to find another permutation {p1,p2,...,pn} such that the length of LCS (longest common subsequence) of {ap1,ap2,...,apn} and {bp1,bp2,...,bpn} is maximum.
 

 

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer n(1n105) - the length of the permutation. The second line contains n integers a1,a2,...,an. The third line contains nintegers b1,b2,...,bn.

The sum of n in the test cases will not exceed 2×106.
 

 

Output

For each test case, output the maximum length of LCS.
 

 

Sample Input

2
3
1 2 3
3 2 1
6
1 5 3 2 6 4
3 6 2 4 5 1
 

 

Sample Output

2
4
一个环的问题,根据题意可知,出现环answer += len() - 1;没有环,则answer += len();
并且若没有环即上下数字相同,即len() = 1;
简单的搜索一下环就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
const int maxn = 1e5+5;
using namespace std;
int a[maxn];
int b[maxn];
int sum[maxn];
bool vis[maxn];
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        int n;
        scanf("%d",&n);
        for(int i = 1; i <= n; i++){
            scanf("%d",&a[i]);
        }
        for(int i = 1; i <= n; i++){
            scanf("%d",&b[a[i]]);
        }
        for(int i = 1; i <= n; i++){
            vis[i] = 0;
        }
        int ans = 0;
        for(int i = 1; i <= n; i++){
            int x = a[i];
            if(vis[x])continue;
            int cnt = 0;
            while(!vis[x]){
                vis[x] = 1;
                x = b[x];
                cnt++;
            }
            if(cnt == 1)ans++;
            else ans += cnt-1;
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

posted @ 2015-10-04 15:53  Tobu  阅读(172)  评论(0编辑  收藏  举报