HDU2050 折线分割平面

题目:acm.hdu.edu.cn/showproblem.php?pid=2050

递推:

从直线入手,第n条直线,最多和平面上的直线有n-1个交点,多出(n-1)+1个部分

序号 1 2 3 ... n
交点 0 1 2 ... n-1
多出部分 1 2 3 ... (n-1)+1

总部分                         2          4          7        ....

在转化为折线,当增加第n条折线时,与图形新的交点最多2*2*(n-1), 多出2*2*(n-1)+1 个部分

(可以把折线看作两条直线理解)

所以 f(n) = f(n-1) + 4*(n-1)+1;

AC代码:

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <bitset>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <sstream>
#include <stack>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define FO freopen("in.txt", "r", stdin);
#define lowbit(x) (x&-x)
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
const int inf = 0x3f3f3f3f;
ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
template <class T>
inline bool scan_d(T &ret)
{
    char c; int sgn;
    if (c = getchar(), c == EOF) return 0; //EOF
    while (c != '-' && (c < '0' || c > '9')) c = getchar();
    sgn = (c == '-') ? -1 : 1;
    ret = (c == '-') ? 0 : (c - '0');
    while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
    ret *= sgn;
    return 1;
}
inline void out(ll x)
{
    if (x > 9) out(x / 10);
    putchar(x % 10 + '0');
}

const int maxn = 10010;
ll f[maxn], ans;
int main() {
	int _, n;
	f[1] = 2;
	rep(i, 2, maxn) {
		f[i] = f[i-1]+4*(i-1)+1;//递推公式 
	} 
	for(scan_d(_);_;_--) {
		scan_d(n);
		out(f[n]);
		printf("\n");
	}
}



 

posted @ 2018-07-27 20:51  Frontierone  阅读(126)  评论(0编辑  收藏  举报