BM线性递推
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
ll dp[3000];
int main() {
int _;
for(scanf("%d",&_);_;_--) {
int k;
ll n;
scanf("%d%lld",&k,&n);
if(n==-1) {
printf("%lld\n",2*powmod(k+1,mod-2)%mod);
} else {
VI t;
dp[0]=1;
t.push_back(dp[0]);
for(int i=1;i<=2*k;i++) {
dp[i]=0;
for(int j=max(0,i-k);j<i;j++) {
dp[i]=(dp[i]+dp[j])%mod;
}
dp[i]=dp[i]*powmod(k,mod-2)%mod;
t.push_back(dp[i]);
}
printf("%lld\n",linear_seq::gao(t,n));
}
}
}
埋骨何须桑梓地,人生无处不青山