牛客寒假算法基础集训营1 D 小a与黄金街道

链接:https://ac.nowcoder.com/acm/contest/317/D

首先被数学题吓到了。gcd(n,x)==1 那么必定有 gcd(n,n-x)==1 证明略。

并且两个人的对答案贡献一样。

对于A来说 ,A*ka *k(n-a) * kb *k(n-b) = A*kRn

转化为求Rn 。 因为gcd(n,a)==1, 也就是互质,所以转化为不超过n与n互质的数之和

有一个结论:sigma = n*Ψ(n)/2

 

所以答案就是  (A+B)*kn*Ψ(n)/2

 

通过这道题,理解了如何取摸 

学习了快速幂 和 欧拉函数求法

 

 1 #include<stdio.h>
 2 #define mod 1000000007
 3 typedef long long ll;
 4 int n,k;
 5 ll A,B;
 6 
 7 ll eular(ll n) {
 8     ll res=n;
 9     for(int i=2;i*i<=n;i++) {
10         if(n%i==0) {
11             res-=res/i;
12             while(n%i==0) n/=i;
13         }
14     }
15     if(n>1) return res-=res/n;
16     return res;
17 }
18 
19 ll pow_m(ll a,ll b) {
20     ll temp=a%mod;
21     ll sum=1;
22     while(b) {
23         if(b&1) sum=(sum*temp)%mod;
24         temp=temp*temp%mod;
25         b>>=1;
26     }
27     return sum;
28 }
29 
30 int main() {
31     scanf("%d%d%lld%lld",&n,&k,&A,&B);
32     ll temp=n*eular(n)/2;
33     printf("%lld",(((A%mod+B%mod)%mod)*(pow_m(k,temp)%mod))%mod);
34 }

 

posted @ 2019-01-25 15:07  Frontierone  阅读(153)  评论(0编辑  收藏  举报