高精度运算(超大数字运算)
A Fibonacci sequence is calculated by adding the previous two members the sequence, with the first two members being both 1.
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
Input
Each line will contain an integers. Process to end of file.
Output
For each case, output the result in a line.
Sample
Inputcopy | Outputcopy |
---|---|
100 | 4203968145672990846840663646 Note: No generated Fibonacci number in excess of 2005 digits will be in the test data, ie. F(20) = 66526 has 5 digits. |
用二维数组来储存数字
#include<iostream>
#include<set>
#include<vector>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<map>
#include<math.h>
#include<stack>
#include<string.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e8;
int f[10000][600];
void init() {
for (int i = 1; i <= 4; i++) {
f[i][0] = 1;
}
for (int i = 5, t = 0, b = 0; i < 10000-2; i++) {
t = 0, b = 0;
for (int j = 0; j < 600-3; j++) {
t = f[i - 1][j] + f[i - 2][j] + f[i - 3][j] + f[i - 4][j] + b;
f[i][j] = t % MAXN;
b = t / MAXN;
}
}
}
int main() {
init();
int n = 0;
while (scanf("%d", &n) != EOF) {
int fl = 1;
for (int i = 600-5; i >= 0; i--) {
if (fl == 1 && f[n][i] == 0) {
continue;
}
else if (fl == 1) {
printf("%d", f[n][i]);
fl = 0;
}
else {
printf("%08d", f[n][i]);
}
}
cout << endl;
}
return 0;
}
或是
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int N = 10000, M = 3000;
char f[N][M+2];
void init();
void print(int I);
int main() {
init();
/*for (int i = 1; i < 100; i++)
print(i);*/
int n;
while (cin >> n) {
if (n > N)
break;
print(n);
}
return 0;
}
void print(int I) {
int g = 0;
for (int i = M; i >=0; i--) {
if (f[I][i] == 0 && g == 0)
continue;
else {
g = 1;
printf("%d", (int)(f[I][i]));
}
}
printf("\n");
}
void init() {
memset(f, 0, sizeof(f));
f[1][0] = 1;
f[2][0] = 1;
f[3][0] = 1;
f[4][0] = 1;
for (int i = 5; i < N; i++) {
int jin = 0;
for (int j = 0; j <=M; j++) {
f[i][j] = f[i - 1][j] + f[i - 2][j] + f[i - 3][j] + f[i - 4][j] + jin;
jin = f[i][j] / 10;
f[i][j] %= 10;
}
if (f[i][M] != 0)
break;
}
}