线性dp,优化记录,272. 最长公共上升子序列

272. 最长公共上升子序列 - AcWing题库

熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目。

小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们研究最长公共上升子序列了。

小沐沐说,对于两个数列 A 和 B,如果它们都包含一段位置不一定连续的数,且数值是严格递增的,那么称这一段数是两个数列的公共上升子序列,而所有的公共上升子序列中最长的就是最长公共上升子序列了。

奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子序列。

不过,只要告诉奶牛它的长度就可以了。

数列 A 和 B 的长度均不超过 3000。

输入格式

第一行包含一个整数 N,表示数列 A,B 的长度。

第二行包含 N 个整数,表示数列 A。

第三行包含 N 个整数,表示数列 B。

输出格式

输出一个整数,表示最长公共上升子序列的长度。

数据范围

1≤N≤3000,序列中的数字均不超过 231−1。

输入样例:
4
2 2 1 3
2 1 2 3
输出样例:
2

 解析

(DP,线性DP,前缀和) O(n2)
这道题目是AcWing 895. 最长上升子序列和AcWing 897. 最长公共子序列的结合版,在状态表示和状态计算上都是融合了这两道题目的方法。

状态表示:

f[i][j]代表所有a[1 ~ i]和b[1 ~ j]中以b[j]结尾的公共上升子序列的集合;
f[i][j]的值等于该集合的子序列中长度的最大值;
状态计算(对应集合划分):

首先依据公共子序列中是否包含a[i],将f[i][j]所代表的集合划分成两个不重不漏的子集:

不包含a[i]的子集,最大值是f[i - 1][j];
包含a[i]的子集,将这个子集继续划分,依据是子序列的倒数第二个元素在b[]中是哪个数:
子序列只包含b[j]一个数,长度是1;
子序列的倒数第二个数是b[1]的集合,最大长度是f[i - 1][1] + 1;

子序列的倒数第二个数是b[j - 1]的集合,最大长度是f[i - 1][j - 1] + 1;
如果直接按上述思路实现,需要三重循环:

作者:yxc
链接:https://www.acwing.com/solution/content/4955/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

for (int i = 1; i <= n; i ++ )
{
    for (int j = 1; j <= n; j ++ )
    {
        f[i][j] = f[i - 1][j];
        if (a[i] == b[j])
        {
            int maxv = 1;
            for (int k = 1; k < j; k ++ )
                if (a[i] > b[k])
                    maxv = max(maxv, f[i - 1][k] + 1);
            f[i][j] = max(f[i][j], maxv);
        }
    }
}

作者:yxc
链接:https://www.acwing.com/solution/content/4955/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 优化后将三重循环压缩成两成层循环

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>

using namespace std;
typedef long long LL;
const int N = 3e3 + 5;
int n;
int a[N], b[N],f[N][N];

int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}
	for (int i = 1; i <= n; i++) {
		scanf("%d", &b[i]);
	}
	for (int i = 1; i <= n; i++) {
		int maxv = 1;
		for (int j = 1; j <= n; j++) {
			f[i][j] = f[i - 1][j];
			if (a[i] == b[j]) {
				f[i][j] = max(f[i][j], maxv);
			}
			if (a[i] > b[j])
				maxv = max(maxv, f[i - 1][j]+1);
		}
	}
	int ans = 0;
	for (int i = 1; i <= n; i++) {
		ans = max(ans, f[n][i]);
	}
	cout << ans << endl;
	return 0;
}



posted @ 2023-09-16 12:03  Landnig_on_Mars  阅读(4)  评论(0编辑  收藏  举报  来源