hdu 1711 Number Sequence KMP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711
分析:求最小偏移位置使得两字符串匹配,KMP应用。
/*Number Sequence Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 12466 Accepted Submission(s): 5687 Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. Input The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. Output For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. Sample Input 2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1 Sample Output 6 -1 Source HDU 2007-Spring Programming Contest */ #include <cstdio> const int maxn = 10000 + 10, maxm = 1000000 + 10; int n, m; int p[maxn], t[maxm], next[maxn]; //定义模式串,文本串,next数组 void getNext() //O(m)复杂度求Next数组 { int i = 0, j = 0, k = -1; next[0] = -1; while(j < m){ if(k == -1 || p[k] == p[j]) next[++j] = ++k; else k = next[k]; } } int kmp() { int j = 0; //初始化模式串的前一个位置 getNext(); //生成next数组 for(int i = 0; i < n; i++){//遍历文本串 while(j && p[j] != t[i]) j = next[j];//持续走直到可以匹配 if(p[j] == t[i]) j++; //匹配成功继续下一个位置 if(j == m) return i-m+2; //找到后返回第一个匹配的位置 } return -1; //找不到返回-1 } int main() { int T; scanf("%d", &T); while(T--){ scanf("%d%d", &n, &m); for(int i = 0; i < n; i++) scanf("%d", t+i); for(int i = 0; i < m; i++) scanf("%d", p+i); printf("%d\n", kmp()); } return 0; }