背包问题

DP(动态规划)学习笔记

背包问题

01背包 每件物品最多使用一次

完全背包 每件物品有无限个

多重背包 每种物品最多有si个 (存在朴素版和优化版)

分组背包 每组最多只能选 1 个

DP优化:对dp方程进行等价变形

DP最重要的就是公式推导(对于当前状态的计算)

要满足两个条件:①不重 ②不漏

1.01背包问题

题目链接:https://www.acwing.com/problem/content/2/

最简单的01背包

dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);

当前的值等于加入第i个物品和不加入第i个数(保证体积总值小于v)的最大的值。

1.朴素版:

#include <iostream>
using namespace std;
const int maxn=1e3+5;
int v[maxn],w[maxn];
int dp[maxn][maxn];

int main(){
	int n,na;
	cin>>n>>na;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	
	for(int i=1;i<=n;i++){
		for(int j=1;j<=na;j++){
			dp[i][j]=dp[i-1][j];
			if(j>=v[i])
			dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);
		}
	}
	cout<<dp[n][na];
	
	return 0;
}

2.空间(和时间)优化版

可以使用滚动数组来优化(节约空间)

同时在第二遍循环的时候节约了时间

因为f(i)这层只用到了f(i-1)这一层。

#include <iostream>
using namespace std;
const int maxn = 1e3+5;
int v[maxn],w[maxn];
int dp[maxn];
int main(){
	int n,r;
	cin>>n>>r;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=r;j>=v[i];j--){//必须从后往前遍历(因为)
			dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
		} 
	}
	cout<<dp[r];
	return 0;
}

2.完全背包

每件物品可以放入无限次,求最大价值。

题目链接:https://www.acwing.com/problem/content/3/

1.朴素版

状态转移公式
$$
dp[i][j]=max(dp[i-1][j],dp[i-1][j-kv[i]]+kw[i]);
$$
相当于不选和选k个进行比较,找到最大的价值

#include <iostream>
using namespace std;
const int maxn = 1e3+5;
int v[maxn],w[maxn];
int dp[maxn][maxn];
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			for(int k=0;k*v[i]<=j;k++){
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	cout<<dp[n][m];
	
	return 0;
}

2.优化版

//普通优化
#include <iostream>
using namespace std;
const int N = 1e3+4;
int v[N],w[N];
int dp[N][N];
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			dp[i][j]=dp[i-1][j];
			if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
		}
	}
	cout<<dp[n][m];
	return 0;
}


//滚动数组形式
#include <iostream>
using namespace std;
const int N = 1e3+4;
int v[N],w[N];
int dp[N];
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
	for(int i=1;i<=n;i++){
		for(int j=v[i];j<=m;j++){
			dp[i]=max(dp[i],dp[j-v[i]]+w[i]);
		}
	}
	cout<<dp[m];
	return 0;
}

3.多重背包

每件物品最多能放入si次,求最大价值。

题目链接:https://www.acwing.com/problem/content/4/

1.朴素版

时间复杂度O(n v s)

#include <iostream>
using namespace std;
const int N = 1e3+4;
int v[N],w[N],s[N];
int dp[N][N];
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			for(int k=0;k<=s[i]&&k*v[i]<=j;k++){
				dp[i][j]=max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	cout<<dp[n][m];
	return 0;
}

2.优化为01背包版

题目链接:https://www.acwing.com/problem/content/5/

二进制优化方式

将si个物品打包好后简化成01背包问题。

例:1023

1 2 4 8 ,,,512 进行01背包可以凑出1-1023中任意的数。

1 ->0 1

1 2 -> 0 1 2 3

1 2 3 -> 0 1 2 3 4 5 6

1...512 -> 0-1023

这样就把应该枚举的1024次简化为了10次。

200

1 2 4 8 16 32 64 73(200-127)

8次可以简化200次 lg 200

优化后的时间复杂度O(n v lg s)

#include <iostream>
using namespace std;
const int N = 250005,M=2010;
int v[N],w[N],dp[N],cnt;
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		int a,b,s;
		cin>>a>>b>>s;
		int k=1;
		while(k<=s){//将s拆分
			cnt++;
			v[cnt] = a*k;
			w[cnt] = b*k;
			s-=k;
			k*=2;
		}
		if(s>0){//如果还有剩余 
			cnt++;
			v[cnt]=a*s;
			w[cnt]=b*s;
		}
	}
	n=cnt;
	for(int i=1;i<=n;i++){
		for(int j=m;j>=v[i];j--){
			dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
		}
	}
	cout<<dp[m];
	return 0;
}

4.分组背包

注(滚动数组):如果是从上一层数组更新,那么从后往前遍历。

​ 如果是从当前这层数组更新,那么从前往后遍历。

每组要一种,求最大价值

题目链接:https://www.acwing.com/problem/content/9/

直接上滚动数组版

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n,m;
int v[N][N],w[N][N],s[N];
int f[N];
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>s[i];//存的是每组的个数 
		for(int j=0;j<s[i];j++){
			cin>>v[i][j]>>w[i][j];
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=m;j>=0;j--){
			for(int k=0;k<s[i];k++){
				if(v[i][k]<=j){
					f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
				}
			}
		}
	}
	cout<<f[m];
	return 0;
} 

本博客是借鉴yxc(y总)视频总结的笔记。

posted @ 2020-11-06 20:57  ACHanHan  阅读(113)  评论(1编辑  收藏  举报