洛谷 P1052过河题解--zhengjun
题目描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:\(0,1,…,L\)(其中\(L\)是桥的长度)。坐标为\(0\)的点表示桥的起点,坐标为\(L\)的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是\(S\)到\(T\)之间的任意正整数(包括\(S,T\))。当青蛙跳到或跳过坐标为\(L\)的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度\(L\),青蛙跳跃的距离范围\(S,T\),桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
输入格式
第一行有\(1\)个正整数\(L(1 \le L \le 10^9)\),表示独木桥的长度。
第二行有\(3\)个正整数\(S,T,M\),分别表示青蛙一次跳跃的最小距离,最大距离及桥上石子的个数,其中\(1 \le S \le T \le 10\),\(1 \le M \le 100\)。
第三行有\(M\)个不同的正整数分别表示这\(M\)个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
输出格式
一个整数,表示青蛙过河最少需要踩到的石子数。
输入输出样例
输入 #1 复制
10
2 3 5
2 3 5 6 7
输出 #1 复制
2
说明/提示
对于\(30\%\)的数据,\(L \le 10000\);
对于全部的数据,\(L \le 10^9\)。
\(2005\)提高组第二题
思路
一看到题目,喂耶!这么水的\(dp\)还可以搞成蓝色标签。
用\(f_i\)表示跳到第\(i\)个石头后最少要踩到多少块石头。
马上就列出了转移公式:
\(f_i=\min(\infty,\min\{f_{i-j},s\leq j\leq t\})\)
这里的\(\infty\)是为了防止\(j<s\)的情况。
可是乍眼一看。
\(L≤10^9\)
什么鬼东西,数组搞个\(10^9\)内存早炸了。
于是,发现\(a_i\)的值很大,而\(a\)的个数十分小,所以——离散化
那么,怎么个离散化法呢?
因为\(a_i\)的值很大,所以两两之间的空隙十分多,我们就可以在这里做文章。
因为如果两个\(a\)之间有一段长度,是\(lcm(s,t)\)\((\)就是\(s\)和\(t\)的最小公倍数\()\),这样的话,从左端点,无论是走\(s\)还是\(t\),他都可以走到右端点(实际上就是剩下一些多余的没有跳到石头上的路),这样我们就要把这一段切掉。
但是还要考虑一个问题,如果切掉之后长度小于\(lcm(s,t)\),那么就会影响答案了,就比如说:
\(s=1,t=2\)
原来是:
|***|*|***|
1 2 3 4--最优解
| | | |
. # . . # .
^ ^
石头 石头
而被你一缩,成了
|***|*|
1 2 3
| | |
. . . .
^ ^
石头
就要踩到一个石头了。(实际上会错\(20\)分)
所以,为了保证答案的正确性,就要这么办:
- 如果之间的距离小于\(2\times lcm(s,t)\),那么就不用变。
- 如果大于它,就要缩点(注意,不能缩到\(lcm(s,t)\),要缩到\(lcm(s,t)\)到\(lcm(s,t)\times2-1\)之间才可以)
最后,我们来想一想数组要开多大。
因为缩点之后,两点的距离不会超过\(lcm(s,t)\times2\),所以缩完点后最大就是\(lcm(s,t)\times2-1\),而\(lcm(s,t)\)最大是\(90\),所以两点之间最多有\(179\)。
然后,有\(100\)个点,就要\(179\times99=17721\)。
所以,数组开\(20000\)足够了。
最后,还有一个细(kēng)节(diǎn),会让你丢掉\(20\)分——特判\(s=t\)
代码
#include<bits/stdc++.h>
#define min(x,y) ((x)<(y)?(x):(y))
using namespace std;
int l;
int s,t,m;
int a[101],b[101];
int f[20000];
int flag[20000];
int gcd(const int &x,const int &y){//求最大公约数
if(y==0)return x;
return gcd(y,x%y);
}
int lcm(const int &x,const int &y){//求最小公倍数
return x*y/gcd(x,y);
}
int main(){
scanf("%d%d%d%d",&l,&s,&t,&m);
int k=lcm(s,t);
for(int i=1;i<=m;i++)scanf("%d",&a[i]);
if(s==t){//特判
int sum=0;
for(int i=1;i<=m;i++)if(a[i]%s==0)sum++;
printf("%d",sum);
return 0;
}
a[m+1]=l;//最后一个终点也算上去
sort(a+1,a+1+m);
for(int i=1;i<=m+1;i++){
if(a[i]-a[i-1]>=2*k)b[i]=(a[i]-a[i-1])%k+k;//缩点
else b[i]=a[i]-a[i-1];
}
for(int i=1;i<=m+1;i++){
a[i]=a[i-1]+b[i];
flag[a[i]]=1;
}
flag[a[m+1]]=0;//终点不会有石头
for(int i=1;i<=a[m+1]+t+1;i++){//这里用了一个不存在的状态来表示最终答案——跳出终点或跳到终点
f[i]=0x3fffffff;//初始化
for(int j=s;j<=min(i,t);j++){
f[i]=min(f[i],f[i-j]+flag[i]);//公式
}
}
printf("%d",f[a[m+1]+t+1]);//输出
return 0;
}