P4315 月下毛景树 (树链剖分)
P4315 月下毛景树
这是一道树剖(线段树)好题 。思路就是树链剖分,然后线段树维护最值。 这道题麻烦在两点:
- 边权转点权
- 区间加 + 区间覆盖的 lazy 标记处理 (要强调本线段树维护最值)
首先边权转点权处理,其实如果做过 P3038 那边权转点权并不是什么大问题,只要把点 x 和父亲结点相连的边的权值看成点 x 的权值就行了。 同时注意各种操作时处理\(dfn[x] + 1\) 到\(dfn[y]\) 就行了。
主要看第二个问题的处理,如果只有一个的话就不难,但两个的话就需要两个lazy标记:\(lz1:\) 区间覆盖标记,\(lz2:\) 区间加标记。我没们在pushdown时,要先处理区间覆盖的lazy标记:
if(tree[index].lz1 >= 0){
//覆盖后那子区间最值就是lz1
tree[index << 1].val = tree[index << 1 | 1].val = tree[index].lz1;
//子区间最值也是lz1,这里下传标记
tree[index << 1].lz1 = tree[index << 1 | 1].lz1 = tree[index].lz1;
//子区间加的标记是之前下传的,现在覆盖了就要改为0
tree[index << 1].lz2 = tree[index << 1 | 1].lz2 = 0;
//当前区间标记已经使用所有初始化
tree[index].lz1 = -1;
}
再处理区间加的lazy标记:
if(tree[index].lz2){
//由于区间加,子区间最值也+val
tree[index << 1].val += tree[index].lz2;
tree[index << 1 | 1].val +=tree[index].lz2;
//下传lz2标记
tree[index << 1].lz2 += tree[index].lz2;
tree[index << 1 | 1].lz2 += tree[index].lz2;
//使用后标记初始化
tree[index].lz2 = 0;
}
然后其他线段树部分维护区间最值。
Change:
void Change(int x, int val){
updata1(dfn[x], dfn[x], 1, val);
}
Cover:
void Cover(int x, int y, int val){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
updata1(dfn[top[x]], dfn[x], 1, val);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
updata1(dfn[x] + 1, dfn[y], 1, val); //边权转点权后注意这里
}
Add:
void Add(int x, int y, int val){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
updata2(dfn[top[x]], dfn[x], 1, val);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
updata2(dfn[x] + 1, dfn[y], 1, val); //边权转点权后注意这里
}
Max:
int Max(int x, int y){
int ans = 0;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
ans = max(ans, query(dfn[top[x]], dfn[x], 1));
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
ans = max(ans, query(dfn[x] + 1, dfn[y], 1)); //边权转点权后注意这里
return ans;
}
代码:
/*
2020/8/17/19:59
树链剖分:含点权转边权处理。
*/
#include<bits/stdc++.h>
using namespace std;
#define rep(i, a, n) for(int i = a; i <= n; ++ i);
#define per(i, a, n) for(int i = n; i >= a; -- i);
typedef long long ll;
const int N = 2e6+ 5;
const ll mod = 1e9 + 7;
const double Pi = acos(- 1.0);
const int INF = 0x3f3f3f3f;
const int G = 3, Gi = 332748118;
ll qpow(ll a, ll b) { ll res = 1; while(b){ if(b & 1) res = (res * a) % mod; a = (a * a) % mod; b >>= 1;} return res; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a * b / gcd(a, b);}
bool cmp(int a, int b){ return a > b;}
//
int tpp[N];
int n, m;
int ax[N], ay[N];
int head[N], cnt = 0, tot = 0;
int siz[N], dep[N], fa[N], son[N];
int dfn[N], tval[N], val[N], top[N], rnk[N];
struct node{
int to, nxt, c;
}edge[N << 1];
void add(int u, int v, int w){
edge[cnt].to = v, edge[cnt].c = w, edge[cnt].nxt = head[u], head[u] = cnt ++;
edge[cnt].to = u, edge[cnt].c = w, edge[cnt].nxt = head[v], head[v] = cnt ++;
}
struct Tree{
int l, r, val;
int lz1, lz2;
}tree[N * 4];
void pushdown(int index){
if(tree[index].lz1 >= 0){
tree[index << 1].val = tree[index << 1 | 1].val = tree[index].lz1;
tree[index << 1].lz1 = tree[index << 1 | 1].lz1 = tree[index].lz1;
tree[index << 1].lz2 = tree[index << 1 | 1].lz2 = 0;
tree[index].lz1 = -1;
}
if(tree[index].lz2){
tree[index << 1].val += tree[index].lz2; tree[index << 1 | 1].val += tree[index].lz2;
tree[index << 1].lz2 += tree[index].lz2; tree[index << 1 | 1].lz2 += tree[index].lz2;
tree[index].lz2 = 0;
}
}
void pushup(int index){
tree[index].val = max(tree[index << 1].val, tree[index << 1 | 1].val);
}
void Build(int l, int r, int index){
tree[index].l = l; tree[index].r = r;
tree[index].lz1 = -1; tree[index].lz2 = tree[index].val = 0;
if(l == r){
// tpp[l] = index;
tree[index].val = tval[l];
return;
}
int mid = (tree[index].l + tree[index].r) >> 1;
Build(l, mid, index << 1);
Build(mid + 1, r, index << 1 | 1);
pushup(index);
}
void updata1(int l, int r, int index, int val){
if(tree[index].l >= l && tree[index].r <= r){
tree[index].lz1 = val;
tree[index].lz2 = 0;
tree[index].val = val;
return;
}
pushdown(index);
int mid = (tree[index].l + tree[index].r) >> 1;
if(l <= mid) updata1(l, r, index << 1, val);
if(r > mid) updata1(l, r, index << 1 | 1, val);
pushup(index);
}
void updata2(int l, int r, int index, int val){
if(tree[index].l >= l && tree[index].r <= r){
tree[index].lz2 += val;
tree[index].val += val;
return;
}
pushdown(index);
int mid = (tree[index].l + tree[index].r) >> 1;
if(l <= mid) updata2(l, r, index << 1, val);
if(r > mid) updata2(l, r, index << 1 | 1, val);
pushup(index);
}
int query(int l, int r, int index){
if(l <= tree[index].l && tree[index].r <= r){
return tree[index].val;
}
pushdown(index);
int mid = (tree[index].l + tree[index].r) >> 1;
int res = 0;
if(l <= mid) res = max(res, query(l, r, index << 1));
if(r > mid) res = max(res, query(l, r, index << 1 | 1));
return res;
}
//--------------------------
void Change(int x, int val){
updata1(dfn[x], dfn[x], 1, val);
}
void Cover(int x, int y, int val){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
updata1(dfn[top[x]], dfn[x], 1, val);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
updata1(dfn[x] + 1, dfn[y], 1, val);
}
void Add(int x, int y, int val){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
updata2(dfn[top[x]], dfn[x], 1, val);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
updata2(dfn[x] + 1, dfn[y], 1, val);
}
int Max(int x, int y){
int ans = 0;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
ans = max(ans, query(dfn[top[x]], dfn[x], 1));
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
ans = max(ans, query(dfn[x] + 1, dfn[y], 1));
return ans;
}
void dfs1(int u, int pre){
dep[u] = dep[pre] + 1;
siz[u] = 1;
fa[u] = pre;
int maxx = -1;
for(int i = head[u]; i != -1; i = edge[i].nxt){
int v = edge[i].to, w = edge[i].c;
if(v == pre) continue;
val[v] = w;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > maxx){
maxx = siz[v];
son[u] = v;
}
}
}
void dfs2(int u, int topu){
dfn[u] = ++ tot;
tval[tot] = val[u];
top[u] = topu;
rnk[tot] = u;
if(!son[u]) return;
dfs2(son[u], topu);
for(int i = head[u]; i != -1; i = edge[i].nxt){
int v = edge[i].to, w = edge[i].c;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
// void print(){
// for(int i = 1; i <= n; ++ i){
// int tt = tpp[dfn[i]];
// cout<<tree[tt].val<<" ";
// }
// cout<<endl;
// }
int main()
{
scanf("%d",&n);
cnt = 0;
for(int i = 0; i <= n; ++ i) head[i] = -1;
for(int i = 1; i < n; ++ i){
int z; scanf("%d%d%d",&ax[i], &ay[i], &z);
add(ax[i], ay[i], z);
}
dfs1(1, 0);
dfs2(1, 1);
Build(1, n, 1);
// print();
char op[10];
while(1){
scanf("%s",op);
if(op[0] == 'S') break;
else if(op[1] == 'h'){ //change
int x, y; scanf("%d%d",&x,&y);
if(dep[ax[x]] < dep[ay[x]]) Change(ay[x], y);
else Change(ax[x], y);
}
else if(op[1] == 'o'){ //Cover
int x, y, z; scanf("%d%d%d",&x,&y,&z);
Cover(x, y, z);
}
else if(op[1] == 'd'){ //Add
int x, y, z; scanf("%d%d%d",&x,&y,&z);
Add(x, y, z);
}
else{
int x, y; scanf("%d%d",&x,&y);
printf("%d\n",Max(x, y));
}
// print();
}
return 0;
}