luogu P2257- YY的GCD (莫比乌斯反演)
题意:
求 x 在[1, n]范围内,y 在[1, m]范围内的满足 gcd(x, y) 为质数的x,y对数。
题解:
-
前面已经计算了gcd(x,y)=k的数量是
\[f(k) = \sum_{k|d} \mu(\frac{d}{k}) \lfloor\frac{n}{d}\rfloor \lfloor\frac{m}{d}\rfloor \] -
所以如果k是质数,我们用p表示,且d = i * p
\[f(p) = \sum_{i = 1}^{n} \mu(i) \lfloor\frac{n}{ip}\rfloor \lfloor\frac{m}{ip}\rfloor \]所以本题答案可以遍历所有质数p,求和f(p)
\[ans = \sum_{isprime(p)} \sum_{i = 1}^{n} \mu(i) \lfloor\frac{n}{ip}\rfloor \lfloor\frac{m}{ip}\rfloor \] -
上面式子肯定很暴力,所以另T=i*p, 将上式转变为
\[ans = \sum_{T= 1}^{n} \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor \sum_{p|T且isprime(p)} \mu(\frac{T}{p}) \]后面那一堆我们可以预处理出来。\(sum(T) = \sum_{p|T且isprime(p)} \mu(\frac{T}{p})\)
\[ans = \sum_{T= 1}^{n} \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor sum(T) \]O(n)便可以求出来。
//预处理sum(T)
for(int j = 1; j <= cnt; ++ j){
for(int i = 1; pri[j] * i < N; ++ i){
sum[i * pri[j]] += mu[i];
}
}
for(int i = 1; i < N; ++ i)
sum[i] = sum[i - 1] + sum[i];
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e7 + 5;
int pri[N], cnt;
int vis[N];
int mu[N];
int sum[N];
int read(){
int q=0;char ch=' ';
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')q=q*10+ch-'0',ch=getchar();
return q;
}
void prime(){
mu[1] = 1;
for(int i = 2; i < N; ++ i){
if(!vis[i]){
pri[++ cnt] = i;
mu[i] = -1;
}
for(int j = 1; j <= cnt && pri[j] * i < N; ++ j){
vis[pri[j] * i] = 1;
if(i % pri[j] == 0){
mu[pri[j] * i] = 0;
break;
}
mu[pri[j] * i] = -mu[i];
}
}
for(int j = 1; j <= cnt; ++ j){
for(int i = 1; pri[j] * i < N; ++ i){
sum[i * pri[j]] += mu[i];
}
}
for(int i = 1; i < N; ++ i)
sum[i] = sum[i] + sum[i - 1];
}
int T, n, m;
int main()
{
prime();
T = read();
while(T --){
n = read(), m = read();
if(n > m) swap(n, m);
ll ans = 0;
for(int i = 1, last = 1; i <= n; i = last + 1){
last = min(n / (n / i), m / (m / i));
ans += (ll)(sum[last] - sum[i - 1]) * (n / i) * (m / i);
}
printf("%lld\n", ans);
}
return 0;
}