模板:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e3 + 15;
const double eps = 1e-6;
int n;
double a[N][N];
int gauss()
{
int c, r;
for(c = 0, r = 0; c < n; ++ c){
int t = r;
for(int i = r; i < n; ++ i)
if(fabs(a[i][c]) > fabs(a[i][t]))
t = i;
if(fabs(a[t][c]) < eps) continue;
for(int i = c; i <= n; ++ i) swap(a[t][i], a[r][i]);
for(int i = n; i >= c; -- i) a[r][i] /= a[r][c];
for(int i = r + 1; i < n; ++ i)
if(abs(a[i][c]) > eps)
for(int j = n; j >= c; -- j)
a[i][j] -= a[r][j] * a[i][c];
r ++;
}
if(r < n){
for(int i = r; i < n; ++ i)
if(fabs(a[i][n]) > eps)
return 2;
return 1;
}
for(int i = n - 1; i >= 0; -- i)
for(int j = i + 1; j < n; ++ j){
a[i][n] -= a[i][j] * a[j][n];
}
return 0;
}
int main()
{
scanf("%d",&n);
for(int i = 0; i < n; ++ i){
for(int j = 0; j <= n; ++ j) scanf("%lf",&a[i][j]);
}
int t = gauss();
if(t == 2) printf("No solution\n");
else if(t == 1) printf("Infinite group solutions\n");
else {
for(int i = 0; i < n; ++ i) printf("%.2lf\n",a[i][n]);
}
return 0;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e3+5;
double b[N], c[N][N];
int n;
int main()
{
scanf("%d",&n);
for(int i = 1; i <= n ; ++ i){
for(int j = 1; j <= n ; ++ j){
scanf("%lf", &c[i][j]);
}
scanf("%lf", &b[i]);
}
pr();
//高斯消元
for(int i = 1; i <= n; ++ i){ //遍历处理第i行
int flag=0;
for(int j = i; j <= n; ++ j){ //处理第i行以下的第j行
if(fabs(c[j][i]) > 1e-8){ //如果第j行i列值大于0,就交换i,j行,加break就只把第一个不为0的行与i行交换
flag=1;
for(int k = 1; k <= n; ++ k) swap(c[i][k], c[j][k]);
swap(b[i], b[j]);
break;
}
}
//无解情况
if(!flag){
printf("No Solution\n");
return 0;
}
//给第j行的值都减去第i行的值乘a[i][i](小于i的列都处理成0了)
for(int j = 1; j <= n; ++ j){//j遍历行1~n(除了i);
if(i == j) continue;
double rate = c[j][i] / c[i][i];
for(int k = i; k <= n; ++ k) c[j][k] -= c[i][k] * rate; // k遍历i~n列
b[j] -= b[i] * rate;
}
}
for(int i = 1; i <= n; ++ i) printf("%.2lf\n",b[i]/c[i][i]);
return 0;
}