338. Counting Bits(动态规划)
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
分析:
这道题完全没看别人的思路,自己想出来的第一道动态规划题目,开心<( ̄︶ ̄)>
当n为奇数时,则n-1为偶数,由二进制可知,n-1的二进制最后一位必定是0
而n的二进制就是在n-1的二进制最后一位加1,并未影响n-1的前面的情况,只把最后一位0,变为了1,所以当n=奇数时,dp[n]=dp[n-1]+1;
举个栗子:6=1*(2^2)+1*(2^1)+0*(2^0),6的二进制是110.
7=1*(2^2)+1*(2^1)+1*(2^0),7的二进制是111.
当n为偶数时,先举个栗子吧,
6=1*(2^2)+1*(2^1)+0*(2^0),6的二进制是110.
n/2就是把每一项都除以2,但是你会发现每一项的系数是不变的,
6/2=3=1*(2^1)+1*(2^0)+0(2^0)
所以当n=偶数时,dp[n]=dp[n/2].
class Solution {
public:
vector<int> countBits(int num) {
vector<int> dp(num+1,0);
for(int i=1;i<num+1;i++){
if(i%2==0)
dp[i]=dp[i/2];
else
dp[i]=dp[i-1]+1;
}
return dp;
}
};