Hashing - Hard Version
Hashing - Hard Version
Given a hash table of size N, we can define a hash function . Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.
However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤1000), which is the size of the hash table. The next line contains N integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.
Output Specification:
For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.
Sample Input
11
33 1 13 12 34 38 27 22 32 -1 21
Sample Output:
1 13 12 21 33 34 38 27 22 32
分析
参考Messier
可以使用拓扑排序来解这道题。基本思路如下:将输入保存在散列表后,遍历每个元素,如果元素刚好在它对应余数的位置上,则入度为0,可直接输出;否则,从余数位置出发,用线性探测法到达该位置,对于经过的所有的非空元素位置,生成一条到该元素位置的边,并将该位置入度加1;拓扑排序时,可以采用优先队列,优先输出数值较小的元素
代码如下
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
vector<int> G[1000]; // 连接表
int N;
int indegree[1000]={0}; // 入度
int a[1000];
struct mycompare{ // 为优先队列自定义操作
bool operator()(int m,int n){
return a[m]>a[n];
}
};
void toposort(){ // 拓扑排序
int tag=0;
priority_queue<int,vector<int>,mycompare> q;
for(int i=0;i<N;i++)
if(indegree[i]==0&&a[i]>=0)
q.push(i);
while(!q.empty()){
int t=q.top();
if(tag++==0) cout<<a[t];
else cout<<" "<<a[t];
q.pop();
for(int i=0;i<G[t].size();i++){
int v=G[t][i];
indegree[v]--;
if(indegree[v]==0)
q.push(v);
}
}
}
int main(){
cin>>N;
for(int i=0;i<N;i++)
cin>>a[i];
for(int i=0;i<N;i++){ // 建图
if(a[i]%N==i||a[i]<0)
continue;
else
{
int t=a[i]%N;
while(t!=i){
G[t].push_back(i);
indegree[i]++;
t=(t+1)%N;
}
}
}
toposort();
return 0;
}