7-16 Sort with Swap(0, i)(25 分)

7-16 Sort with Swap(0, i)(25 分)

Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:

Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4

Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.

Input Specification:

Each input file contains one test case, which gives a positive N (≤10^5) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.

Output Specification:

For each case, simply print in a line the minimum number of swaps need to sort the given permutation.

Sample Input:

10
3 5 7 2 6 4 9 0 8 1

Sample Output:

9

这道题用到了表排序中N个数字的排列由若干独立的环组成的知识。

1.单元环swap(0,i)次数为0;

2.有0的非单元环,swap(0,i)次数为n-1;

3.无0的单元环,可以先把环里随便一个数和0交换一次,这样整个环就变成了含0的n+1个元素的非单元环,根据前面的情况2,次数为(n+1)-1,但还要加上把0换进去的那次,故swap(0,i)次数为n+1;

代码如下:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int flag=0; // 记录circle是否含0;
int main(){
	int N; cin>>N;
	// 储存数列
	vector<int> sequence; 
	
	// 为了已知元素找下标而建立的position集合
	// 其中pos[i]表示sequence中数值为i的元素的下标为pos[i]
	vector<int> pos;   
	
	sequence.resize(N); // 不能少,为sequence创造N个空间
	pos.reserve(N); // 不能少
	
	//读入数据和初始化pos
	for(int i=0;i<N;i++) {
		scanf("%d",&sequence[i]);
		pos[sequence[i]]=i;
	}
	
	//temp储存circle中第一个位置的元素
	//swap_times记录swap(0,i)的次数
	//elements_num记录circle中元素的个数
	int temp,swap_times=0,elements_num=0;
	for(int element=0;element<N;element++){
	
	//temp0用来进行下面的赋值活动
		int element_circle=element; int temp0;
		temp=sequence[element_circle];
		
		//每次进入circle前初始化elements_num为0;
		elements_num=0; 
		//若为单元环,则不进入while,故elements_num为0;
		
	    while(pos[element_circle]!=element_circle){//判断当前位置sequence[i]是否为i,即是否是单元环和环是否结束;若不是,则继续
	    
	    	if(sequence[element_circle]==0)        
	    	flag=1;//记录该circle是否有0 
	    	elements_num++; // 记录circle元素个数
	    	if(pos[pos[element_circle]]!=pos[element_circle])//用于判断当前元素是否环的尾巴
	    	sequence[element_circle]=element_circle; //不是尾巴
	    	else
	    	sequence[element_circle]=temp;// 是尾巴,用temp来赋值
	    	
	    	//下面部分用来更新pos和移动element_circle
	    	temp0=element_circle;
	    	element_circle=pos[element_circle];
	    	pos[temp0]=temp0;
	    	//
			}
		if(elements_num!=0){ // 判断是否是单元环
		if(flag==1) swap_times+=elements_num-1; //判断circle是否有0,有0的非单元环移动elements-1次
	    else swap_times+=elements_num+1; //无0的非单元环移动elements+1次
		}
		
		//归零flag和elements_num
	    flag=elements_num=0;
	}
	cout<<swap_times<<end;
	return 0; 
}

posted @ 2017-12-19 18:01  A-Little-Nut  阅读(759)  评论(0编辑  收藏  举报