二叉搜索树的操作集
04-树7 二叉搜索树的操作集(30 分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
1 BinTree Insert( BinTree BST, ElementType X ){ 2 if(!BST) { 3 BST=(BinTree)malloc(sizeof(struct TNode)); BST->Data=X; BST->Left=BST->Right=NULL; 4 }else if(X<BST->Data) BST->Left=Insert(BST->Left,X); 5 else if(X>BST->Data) BST->Right=Insert(BST->Right,X); 6 return BST; 7 } 8 BinTree Delete( BinTree BST, ElementType X ){ 9 BinTree temp; 10 if(!BST) printf("Not Found\n"); 11 else { 12 if(X<BST->Data) BST->Left=Delete(BST->Left,X); 13 else if(X>BST->Data) BST->Right=Delete(BST->Right,X); 14 else{ 15 if(BST->Left&&BST->Right){ 16 BinTree temp=FindMin(BST->Right); 17 BST->Data=temp->Data; 18 BST->Right=Delete(BST->Right,BST->Data); 19 } 20 else{ temp=BST; 21 if(!BST->Left) BST=BST->Right; 22 else BST=BST->Left; 23 free(temp); 24 } 25 26 } 27 } 28 return BST; 29 } 30 Position Find(BinTree BST, ElementType X) { 31 while (BST && (X != BST->Data)) { 32 if (X < BST->Data) 33 BST = BST->Left; 34 else 35 BST = BST->Right; 36 } 37 return BST; 38 } 39 40 Position FindMin(BinTree BST) { 41 if (BST) { 42 while (BST->Left) 43 BST = BST->Left; 44 } 45 return BST; 46 } 47 48 Position FindMax(BinTree BST) { 49 if (BST) { 50 while (BST->Right) 51 BST = BST->Right; 52 } 53 return BST; 54 }