摘要:
1 基于用户的最近邻推荐: 主要思想:找出与当前用户有相似偏好的其他用户,即对等用户或最近邻,然后对当前用户没有见过的产品P,利用其近邻对p的评分计算预测值。 注意:相似偏好是指对物品的评分偏好,而不是相似个人资料的用户。 对于具有相似偏好的用户集,采用Pearson相关系数,给定评分矩阵R,用户a和用户b的相似度sim(a,b)的求法是对【(用户a对产品pn的评价与用户a的平均评分之差)乘以(用户b对产品pn的评价与用户b的平均评分之差)的积】求和(一共P个产品),再除以【(用户a对产品pn的评价与用户a的平均评分之差)的平方的求和】的平方根与【(用户b对产品pn的评价与用户b的平... 阅读全文