celery

celery介绍,架构

复制代码
# celery: 分布式(放在多台机器)   的  异步任务   框架
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统
Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
# celery:能做什么事,解决什么问题?
    -异步任务---》项目中同步的操作,可以通过celery把它做成异步
  -延迟任务---》隔一会再执行任务
  -定时任务---》每隔多长时间干什么事
      -如果你的项目仅仅想做定时任务,没有必要使用celery,使用apscheduler
    -https://www.cnblogs.com/xiao-xue-di/p/14081790.html
      
      
      
# 大白话理解celery
"""
1)可以不依赖任何服务器,通过自身命令,启动服务
2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务(django),一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求

人是一个独立运行的服务 | 医院也是一个独立运行的服务
    正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
    人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求
"""
# 中间件:不是django中间件
    -中间件概念非常大
      -数据库中间件:应用程序和数据直接有一个东西
    -服务器中间件: web服务和浏览器之间有个东西:nginx
    -消息队列中间件:程序和程序之间:redis,rabbitmq


# celery架构图
    -broker:任务中间件,消息队列中间件,存储任务,celery本身不提供,需要借助第三方:redis,rabbitmq..
  -worker:任务执行单元,真正指向任务的进程,celery提供的
  -backend:结果存储,任务执行结果存在某个地方,借助于第三方:redis
复制代码

 

 

 

celery快速使用

复制代码
# pip install celery

####### 第一步:写一个py文件,celery_task.py---》app实例化,写任务
from celery import Celery
# 消息中间件
broker='redis://127.0.0.1:6379/2'
# 结果存储
backend='redis://127.0.0.1:6379/1'
# 实例化得到对象
app=Celery('test',broker=broker,backend=backend)

# 写任务---》使用装饰器装饰一下变成celery的任务
@app.task
def add(a,b):
    import time
    time.sleep(1)
    return a+b

  
  
  
####### 第二步:提交任务,应该是另一个服务,咱么写了一个py脚本提交
from celery_task import add
# res=add(7,8)  # 同步调用,一直等结果给我
# print(res)
# 异步调用
res=add.apply_async(args=[7,8])  # 把任务提交到redis中的消息队列中了,任务中间件,消息队列中间件
print(res)  # 任务id号:56d48462-6681-4e3b-b91c-5a993e03b5bc


##### 第三步:任务就被提交到redis中了,等待worker执行该任务,启动worker
# 启动worker执行任务---》使用命令启动
# 非windows
命令:celery -A celery_task worker -l info
# windows:
pip3 install eventlet
celery -A celery_task worker -l info -P eventlet


#### 第四步:任务被celery执行完了,结果放到redis中了,查询结果,使用代码 AsyncResult
# 通过代码把结果取出来
from celery_task import app  # 借助于app
from celery.result import AsyncResult  # 导入一个类,来查询结果
id = '56d48462-6681-4e3b-b91c-5a993e03b5bc'
if __name__ == '__main__':
    res = AsyncResult(id=id, app=app)  # 根据id,去哪个app中找哪个任务,
    if res.successful(): # 执行成功
        result = res.get()
        print('任务执行成功')
        print(result) # 15
    elif res.failed():
        print('任务失败')
    elif res.status == 'PENDING':
        print('任务等待中被执行')
    elif res.status == 'RETRY':
        print('任务异常后正在重试')
    elif res.status == 'STARTED':
        print('任务已经开始被执行')
复制代码

celery包结构

复制代码
-celery_task  #
    -__init__.py
    -celery.py  # 写app的py文件,一定要叫这个名字
    -home_task.py # 任务1 
    -order_task.py # 任务2
    -user_task.py # 任务3
--------------下面这些,跟上面可能在不同项目中----------------    
add_task.py   # 提交任务,django中提交
get_result.py # 查询结果,django中查询
复制代码

celery.py

复制代码
from celery import Celery

# 消息中间件
broker = 'redis://127.0.0.1:6379/2'
# 结果存储
backend = 'redis://127.0.0.1:6379/1'
# 实例化得到对象
app = Celery('test', broker=broker, backend=backend, include=[
    'celery_task.home_task',
    'celery_task.order_task',
    'celery_task.user_task',
])
# 写好include,会去相应的py下检索任务,这些任务都被app管理

# 以后任务不写在这里了,放到单独的py文件中
复制代码

user_task.py

from .celery import app

@app.task
def send_sms(phone):
    print('手机号:%s,发送成功' % phone)
    return True

add_task.py

from celery_task.user_task import send_sms

res=send_sms.apply_async(args=['1872637484872'])
print(res)

get_result

复制代码
# 通过代码把结果取出来
from celery_task.celery import app  # 借助于app
from celery.result import AsyncResult  # 导入一个类,来查询结果

id = 'd9692e2a-1e1f-436c-b58f-b25484cc5c56'
if __name__ == '__main__':
    res = AsyncResult(id=id, app=app)  # 根据id,去哪个app中找哪个任务,
    if res.successful(): # 执行成功
        result = res.get()
        print('任务执行成功')
        print(result) # 15
    elif res.failed():
        print('任务失败')
    elif res.status == 'PENDING':
        print('任务等待中被执行')
    elif res.status == 'RETRY':
        print('任务异常后正在重试')
    elif res.status == 'STARTED':
        print('任务已经开始被执行')
复制代码

celery执行异步任务

# 任务名.delay(参数,参数)
# 异步执行

celery执行延迟任务

from datetime import datetime, timedelta
eta = datetime.utcnow() + timedelta(seconds=10)  # 5s后时间
# eta = datetime.utcnow() + timedelta(days=3)  # 3天后后时间
res = send_sms.apply_async(args=['17777777'], eta=eta)
print(res)

celery执行定时任务

复制代码
###### 第一步:在app中写入定时任务
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False
### celery的配置信息---结束###

#### 定时任务
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    'send_sms_5': {
        'task': 'celery_task.user_task.send_sms',  # 哪个任务
        'schedule': timedelta(seconds=5),  # 每5s干一次
        # 'schedule': crontab(hour=8, day_of_week=1),  # 每周一早八点
        'args': ('18988377473',),
    },
}


###### 第一步:启动worker
celery -A celery_task worker -l info
####  第三步:启动beat   【【【【注意路径】】】】】
celery -A celery_task beat -l info


### 本质是beat 5s钟提交一次任务,worker执行
复制代码

django中使用celery

复制代码
# 第一步:把包copy到项目路径下
luffy_api
  celery_task
      user_task.py
      order_task.py
      home_task.py
      celery.py
      __init__.py
      
# 第二步:在要提交任务的地方,导入执行
# 导入django配置文件,需要使用到django中的操作时就需要导入
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "luffy_api.settings.dev")

from celery_task.user_task import create_user class TestView(APIView): def get(self, requeste): create_user.delay('12222222','lqznb','lqz12345') return Response('用户创建任务已经提交') # 第三步:启动worker # 公司里的情况,把task放到了不同app中
复制代码

定时更新轮播图接口

复制代码
# 首页轮播图---》去mysql中查的---》假设瞬间10w访问咱们首页----》数据库会查询10w次,返回数据---》但是实际上,咱们轮播图基本不变
# 我们优化一下---》对轮播图接口做个缓存---》第一次访问查询mysql,放到reids中,以后都从redis中取,如果redis中没有,再去数据库中查----》好处在于,对mysql压力小,redis性能高,    

# 以后如果接口响应慢,第一想法先加缓存:把查出来的数据缓存到redis中,再来请求,先从redis中查,如果没有,再去mysql查,然后在redis缓存一份



class BannerView(GenericViewSet,ListModelMixin,UpdateModelMixin):
# class BannerView(GenericViewSet,ListModelMixin):
    # 获取所有接口-list,自动生成路由
    # qs对象可以像列表一样,切片
    queryset = Banner.objects.filter(is_delete=False,is_show=True).order_by('orders')[:settings.BANNER_COUNT]
    serializer_class =BannerSerializer

    def list(self, request, *args, **kwargs): # 重写list
        # 逻辑是,先去redis中查询,如果有,直接返回,如果没有,再执行下面super().list这句,这句是去数据库中查
        banner_list=cache.get('banner_list')
        if banner_list:
            print('走了缓存,很快很快')
            return APIResponse(result=banner_list)
        else:
            print('没走缓存比较慢')
            res=super().list(request, *args, **kwargs)
            # 再缓存一份
            cache.set('banner_list',res.data)
            return APIResponse(result=res.data)
复制代码

解决加入缓存的坑

复制代码
# redis中有一份数据,mysql中有一份数据
# 存在问题:mysql更新了,reids更新了么?
# 专业名词叫:双写一致性问题  写入mysql,redis是否同步

# 解决双写一致性问题
    -第一:定时更新   10分钟更新一次缓存  
  -第二:写入mysql,删除缓存
  -第三:写入mysql,更新缓存
  
  
# 三种解决方案,没有好于不好之说,只是看业务场景
    -轮播图定时更新---》借助celery
  
  
# 通过定时更新,解决双写一致性问题
复制代码

定时更新

复制代码
@app.task
def update_banner_list():
    queryset = models.Banner.objects.filter(is_delete=False, is_show=True).order_by('-orders')[:settings.BANNER_COUNT]
    banner_list = serializer.BannerSerializer(queryset, many=True).data
    # 拿不到request对象,所以头像的连接base_url要自己组装
    for banner in banner_list:
        banner['image'] = 'http://127.0.0.1:8000%s' % banner['image']

    cache.set('banner_list', banner_list, 86400)
    return True
复制代码

 

posted @   椰子皮0oo0  阅读(205)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)
1
点击右上角即可分享
微信分享提示