1 redis之列表 、2 redis之hash 、3 redis其他操作、 4 redis 管道、 5 django中使用redis 、6 celery介绍和安装、7 celery快速使用 、8 celery包结构

1 redis之列表

'''
1 lpush(name, values)
2 rpush(name, values) 表示从右向左操作
3 lpushx(name, value)
4 rpushx(name, value) 表示从右向左操作
5 llen(name)
6 linsert(name, where, refvalue, value))
7 r.lset(name, index, value)
8 r.lrem(name, value, num)
9 lpop(name)
10 rpop(name) 表示从右向左操作
11 lindex(name, index)
12 lrange(name, start, end)
13 ltrim(name, start, end)
14 rpoplpush(src, dst)
15 blpop(keys, timeout)
16 r.brpop(keys, timeout),从右向左获取数据
17 brpoplpush(src, dst, timeout=0)

'''

import redis

conn = redis.Redis()
# 1 lpush(name, values)   从错侧插入
# conn.lpush('girls', '刘亦菲', '迪丽热巴')
# conn.lpush('girls', '周淑怡')

# 2 rpush(name, values) 表示从右向左操作
# conn.rpush('girls', '小红')

# 3 lpushx(name, value)
# conn.lpushx('boys','小刚')
# conn.lpush('boys','小刚')
# conn.lpushx('girls','小刚')


# 4 rpushx(name, value) 表示从右向左操作


# 5 llen(name)
# res = conn.llen('girls')
# print(res)
# 6 linsert(name, where, refvalue, value))

# conn.linsert('girls','before','迪丽热巴','古力娜扎')
# conn.linsert('girls', 'after', '小红', '小绿')

# conn.linsert('girls', 'after', '小黑', '小嘿嘿')  # 没有标杆,插入不进去


# 7 r.lset(name, index, value)  # 按位置改值
# conn.lset('girls',1,'xxx')

# 8 r.lrem(name, value, num)

# conn.lrem('girls',1,'xxx')  # 从左侧开始,删除1个
# conn.lrem('girls',-1,'xxx')  # 从右侧开始,删除1个
# conn.lrem('girls',0,'xxx')  # 从左开始,全删除

# 9 lpop(name)
# res=conn.lpop('girls')
# print(res)


# 10 rpop(name) 表示从右向左操作

# 11 lindex(name, index)
# res = str(conn.lindex('girls', 1), encoding='utf-8')
# print(res)

# 12 lrange(name, start, end)
# res=conn.lrange('girls',0,0)   # 前闭后闭区间
# print(res)


# 13 ltrim(name, start, end)
# conn.ltrim('girls',2,3)


# 14 rpoplpush(src, dst)

# 15 blpop(keys, timeout)  # 记住 ,可以做消息队列使用  阻塞式弹出,如果没有,就阻塞
# res=conn.blpop('boys')
# print(res)

# 16 r.brpop(keys, timeout),从右向左获取数据
# 17 brpoplpush(src, dst, timeout=0)

conn.close()


'''
lpush
lpop
llen
lrange
'''

image-20230308093726264

2 redis之hash

'''
1 hset(name, key, value)
2 hmset(name, mapping)
3 hget(name,key)
4 hmget(name, keys, *args)
5 hgetall(name)
6 hlen(name)
7 hkeys(name)
8 hvals(name)
9 hexists(name, key)
10 hdel(name,*keys)
11 hincrby(name, key, amount=1)
12 hincrbyfloat(name, key, amount=1.0)
13 hscan(name, cursor=0, match=None, count=None)
14 hscan_iter(name, match=None, count=None)

'''

import redis

conn = redis.Redis()
# 1 hset(name, key, value)
# conn.hset('userinfo','name','lqz')
# conn.hset('userinfo',mapping={'age':19,'hobby':'篮球'})

# 2 hmset(name, mapping)   # 批量设置,被弃用了,以后都使用hset
# conn.hmset('userinfo2',{'age':19,'hobby':'篮球'})

# 3 hget(name,key)
# res=conn.hget('userinfo','name')
# print(res)

# 4 hmget(name, keys, *args)
# res=conn.hmget('userinfo',['name','age'])
# res = conn.hmget('userinfo', 'name', 'age')
# print(res)

# 5 hgetall(name)  # 慎用
# res=conn.hgetall('userinfo')
# print(res)

# 6 hlen(name)
# res=conn.hlen('userinfo')
# print(res)

# 7 hkeys(name)
# res=conn.hkeys('userinfo')
# print(res)

# 8 hvals(name)
# res=conn.hvals('userinfo')
# print(res)

# 9 hexists(name, key)
# res = conn.hexists('userinfo', 'name')
# res = conn.hexists('userinfo', 'name1')
# print(res)

# 10 hdel(name,*keys)
# res = conn.hdel('userinfo', 'age')
# print(res)

# 11 hincrby(name, key, amount=1)
conn.hincrby('userinfo', 'age', 2)
# article_count ={
#     '1001':0,
#     '1002':2,
#     '3009':9
# }

# 12 hincrbyfloat(name, key, amount=1.0)

# hgetall  会一次性全取出,效率低,可以能占内存很多
# 分批获取,hash类型是无序
# 插入一批数据
# for i in range(1000):
#     conn.hset('hash_test','id_%s'%i,'鸡蛋_%s号'%i)

# res=conn.hgetall('hash_test')   # 可以,但是不好,一次性拿出,可能占很大内存
# print(res)
# 13 hscan(name, cursor=0, match=None, count=None)   # 它不单独使用,拿的数据,不是特别准备
# res = conn.hscan('hash_test', cursor=0, count=5)
# print(len(res[1])) #(数字,拿出来的10条数据)   数字是下一个游标位置



# 咱们用这个,它内部用了hscan,等同于hgetall 所有数据都拿出来,count的作用是,生成器,每次拿count个个数
# 14 hscan_iter(name, match=None, count=None)
res=conn.hscan_iter('hash_test',count=10)
# print(res)  # generator 只要函数中有yield关键字,这个函数执行的结果就是生成器 ,生成器就是迭代器,可以被for循环
# for i in res:
#     print(i)



'''
hset
hget
hmget
hlen
hdel
hscan_iter  获取所有值,但是省内存 等同于hgetall
'''



conn.close()

3 redis其他操作

''' 通用操作,不指定类型,所有类型都支持
1 delete(*names)
2 exists(name)
3 keys(pattern='*')
4 expire(name ,time)
5 rename(src, dst)
6 move(name, db))
7 randomkey()
8 type(name)
'''

import redis

conn = redis.Redis()
# 1 delete(*names)
# conn.delete('name', 'userinfo2')
# conn.delete(['name', 'userinfo2'])  # 不能用它
# conn.delete(*['name', 'userinfo2'])  # 可以用它


# 2 exists(name)
# res=conn.exists('userinfo')
# print(res)


# 3 keys(pattern='*')
# res=conn.keys('w?e')  #  ?表示一个字符,   * 表示多个字符
# print(res)


# 4 expire(name ,time)
# conn.expire('userinfo',3)

# 5 rename(src, dst)
# conn.rename('hobby','hobby111')

# 6 move(name, db))
# conn.move('hobby111',8)
# 7 randomkey()
# res=conn.randomkey()
# print(res)
# 8 type(name)
# print(conn.type('girls'))
print(conn.type('age'))
conn.close()

4 redis 管道

# 事务---》四大特性:
	-原子性
    -一致性
    -隔离性
    -持久性
    
    
    
    
    
# redis支持事务吗   单实例才支持所谓的事物,支持事务是基于管道的
	-执行命令  一条一条执行
    	-张三 金额 -100    conn.decr('zhangsan_je',100)
        挂了
        -你   金额 100     conn.incr('李四_je',100)
        
        
   - 把这两条命令,放到一个管道中,先不执行,执行excute,一次性都执行完成
	conn.decr('zhangsan_je',100)   conn.incr('李四_je',100)
    
    
    
# 如何使用
import redis
conn = redis.Redis()
p=conn.pipeline(transaction=True)
p.multi()
p.decr('zhangsan_je', 100)
# raise Exception('崩了')
p.incr('lisi_je', 100)

p.execute()
conn.close()

5 django中使用redis

##  方式一:自定义包方案(通用的,不针对与框架,所有框架都可以用)
	-第一步:写一个pool.py
    import redis
	POOL = redis.ConnectionPool(max_connections=100)
    -第二步:以后在使用的地方,直接导入使用即可
    conn = redis.Redis(connection_pool=POOL)
    conn.incr('count')
    res = conn.get('count')
    
    
    
## 方式二:django 方案,
	-方案一:django的缓存使用redis  【推荐使用】
    	-settings.py 中配置
        CACHES = {
            "default": {
                "BACKEND": "django_redis.cache.RedisCache",
                "LOCATION": "redis://127.0.0.1:6379",
                "OPTIONS": {
                    "CLIENT_CLASS": "django_redis.client.DefaultClient",
                    "CONNECTION_POOL_KWARGS": {"max_connections": 100}
                    # "PASSWORD": "123",
                }
            }
        }
        
       -在使用redis的地方:cache.set('count',  res+1)
       -pickle序列化后,存入的
    
    -方案二:第三方:django-redis模块
    	from django_redis import get_redis_connection
        def test_redis(request):
            conn=get_redis_connection()
            print(conn.get('count'))
            return JsonResponse({'count': '今天这个接口被访问的次数为:%s'}, json_dumps_params={'ensure_ascii': False})

6 celery介绍和安装

# Celery 是什么
	-翻译过来是  芹菜   的意思,跟芹菜没有关系
    -框架:服务,python的框架,跟django无关
    -能用来做什么
    	-1 异步任务
        -2 定时任务
        -3 延迟任务
        
        
# 理解celery的运行原理
"""
1)可以不依赖任何服务器,通过自身命令,启动服务
2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求

人是一个独立运行的服务 | 医院也是一个独立运行的服务
	正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
	人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求
"""



# celery架构(Broker,backend 都用redis)
	- 1 任务中间件 Broker(中间件),其他服务提交的异步任务,放在里面排队
    	-需要借助于第三方 redis   rabbitmq  
    - 2 任务执行单元 worker     真正执行异步任务的进程
    	-celery提供的
    - 3 结果存储   backend     结果存储,函数的返回结果,存到 backend中 
    	-需要借助于第三方:redis,mysql
        
        
        
        
 # 使用场景
    异步执行:解决耗时任务
    延迟执行:解决延迟任务
    定时执行:解决周期(周期)任务
   


# celery 不支持win,通过eventlet支持在win上运行

7 celery快速使用

# 安装---》安装完成,会有一个可执行文件 celery
	pip install celery
    win:pip install eventlet

    
# 快速使用
######### 第一步:新建 main.py######### 
from celery import Celery
# 提交的异步任务,放在里面
broker = 'redis://127.0.0.1:6379/1'
# 执行完的结果,放在这里
backend = 'redis://127.0.0.1:6379/2'
app = Celery('test', broker=broker, backend=backend)
@app.task
def add(a, b):
    import time
    time.sleep(3)
    print('------',a + b)
    return a + b

######### 第二步:其他程序,提交任务######### 
res = add.delay(5,6)   #原来add的参数,直接放在delay中传入即可
print(res)  # f150d8a5-c955-478d-9343-f3b60d0d5bdb


### 第三步:启动worker
# 启动worker命令,win需要安装eventlet
	win:
       -4.x之前版本
		celery worker -A main -l info -P eventlet
       -4.x之后
    	celery  -A main  worker -l info -P eventlet
	mac:
       celery  -A main  worker -l info
        
        
### 第四步:worker会执行消息中间件中的任务,把结果存起来####


### 第五步:咱们要看执行结果,拿到执行的结果#####
from main import app
from celery.result import AsyncResult
id = '51611be7-4914-4bd2-992d-749008e9c1a6'
if __name__ == '__main__':
    a = AsyncResult(id=id, app=app)
    if a.successful():  # 执行完了
        result = a.get()  #
        print(result)
    elif a.failed():
        print('任务失败')
    elif a.status == 'PENDING':
        print('任务等待中被执行')
    elif a.status == 'RETRY':
        print('任务异常后正在重试')
    elif a.status == 'STARTED':
        print('任务已经开始被执行')

8 celery包结构

project
    ├── celery_task  	# celery包
    │   ├── __init__.py # 包文件
    │   ├── celery.py   # celery连接和配置相关文件,且名字必须交celery.py
    │   └── tasks.py    # 所有任务函数
    ├── add_task.py  	# 添加任务
    └── get_result.py   # 获取结果
    
    
############# 第一步:新建包 celery_task #############
# 在包下新建[必须叫celery]的py文件,celery.py 写代码
from celery import Celery
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
app = Celery('test', broker=broker, backend=backend, include=['celery_task.order_task', 'celery_task.user_task'])


##### 第二步:在包内部,写task,任务异步任务####
# order_task
from .celery import app
import time
@app.task
def add(a, b):
    print('-----', a + b)
    time.sleep(2)
    return a + b

# user_task
from .celery import app
import time
@app.task
def send_sms(phone, code):
    print("给%s发送短信成功,验证码为:%s" % (phone, code))
    time.sleep(2)
    return True

####第三步:启动worker ,包所在目录下
	celery  -A celery_task  worker -l info -P eventlet
    
    
###第四步:其他程序 提交任务,被提交到中间件中,等待worker执行,因为worker启动了,就会被worker执行
from celery_task import send_sms
res=send_sms.delay('1999999', 8888)
print(res)  # 7d39033c-4cc7-4af2-8d78-e62c277db183


### 第五步:worker执行完,结果存到backend中

### 第六步:我们查看结构
from celery_task import app
from celery.result import AsyncResult
id = '7d39033c-4cc7-4af2-8d78-e62c277db183'
if __name__ == '__main__':
    a = AsyncResult(id=id, app=app)
    if a.successful():  # 执行完了
        result = a.get()  #
        print(result)
    elif a.failed():
        print('任务失败')
    elif a.status == 'PENDING':
        print('任务等待中被执行')
    elif a.status == 'RETRY':
        print('任务异常后正在重试')
    elif a.status == 'STARTED':
        print('任务已经开始被执行')
posted @   DYuH  阅读(28)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· .NET Core 中如何实现缓存的预热?
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
点击右上角即可分享
微信分享提示