matrix 矩阵(多维DP)
题面
$ solution: $
这一题其实就是一个非常明显的三维背包问题(但博主太弱了就10分QAQ)
$ F[i][j][k]: $ 表示走到 $ (i,j) $ 这个位置并且背包容量为 $ k $ 时的最大价值。因为转移时只能向下或向右转移,所以我们可以按行 $ DP $ (从上到下,从左到右遍历),进行滚动数组,从而把第一位省去。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
int n,m,t,ans;
int a[405][405];
int b[405][405];
int f[405][405];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen("matrix.in","r",stdin);
//freopen("matrix.out","w",stdout);
n=qr(),m=qr(),t=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
a[i][j]=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
b[i][j]=qr();
for(rg i=1;i<=n;++i){
for(rg j=1;j<=m;++j){
for(rg k=0;k<=t;++k){
f[j][k]=max(f[j][k],f[j-1][k]);
if(k+a[i][j]>t)continue;
f[j][k]=max(f[j][k],f[j][k+a[i][j]]+b[i][j]);
f[j][k]=max(f[j][k],f[j-1][k+a[i][j]]+b[i][j]);
}
}
}
for(rg j=1;j<=m;++j)
for(rg i=0;i<=t;++i)
ans=max(ans,f[j][i]);
printf("%d\n",ans);
return 0;
}