5.4
import numpy as np
import math
from scipy.optimize import minimize, Bounds
def func(x):
return sum(math.sqrt(x[i]) for i in range(100))
def con(x):
return 1000 - np.sum(x[i] * (101 - i + 1) for i in range(100))
con1 = {'type': 'ineq', 'fun': lambda x: 10 - x[0]}
con2 = {'type': 'ineq', 'fun': lambda x: 20 - x[0] - 2 * x[1]}
con3 = {'type': 'ineq', 'fun': lambda x: 30 - x[0] - x[1] * 2 - x[2] * 3}
con4 = {'type': 'ineq', 'fun': lambda x: 40 - x[0] - x[1] * 2 - x[2] * 3 - x[3] * 4}
con5 = {'type': 'ineq', 'fun': con}
cons = [con1, con2, con3, con4, con5]
bounds = Bounds([0] * 100, np.inf * 100)
res = minimize(func, np.random.randn(100), constraints=cons, bounds=bounds)
print(res.x)
print(res.fun)