操作系统实验三进程调度
目的和要求
1.1. 实验目的
用高级语言完成一个进程调度程序,以加深对进程的概念及进程调度算法的理解。
1.2. 实验要求
1.2.1例题:设计一个有 N个进程并发执行的进程调度模拟程序。
进程调度算法:采用最高优先级优先的调度算法(即把处理机分配给优先级最高的进程)和先来先服务(若优先级相同)算法。
(1). 每个进程有一个进程控制块(PCB)表示。进程控制块包含如下信息:进程名、优先级、到达时间、需要运行时间、已用CPU时间、进程状态等等。
(2). 进程的优先级及需要的运行时间可以事先人为地指定,进程的运行时间以时间片为单位进行计算。
(3). 每个进程的状态可以是就绪 r(ready)、运行R(Running)、或完成F(Finished)三种状态之一。
(4). 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。
(5). 如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待调度。
(6). 每进行一次调度程序都打印一次运行进程、就绪队列中各个进程的 PCB,以便进行检查。
(7). 重复以上过程,直到所要进程都完成为止。
思考:作业调度与进程调度的不同?
1.2.2实验题A:编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对N(N不小于5)个进程进行调度。
“最高优先级优先”调度算法的基本思想是把CPU分配给就绪队列中优先数最高的进程。
(1). 静态优先数是在创建进程时确定的,并在整个进程运行期间不再改变。
(2). 动态优先数是指进程的优先数在创建进程时可以给定一个初始值,并且可以按一定规则修改优先数。例如:在进程获得一次CPU后就将其优先数减少1,并且进程等待的时间超过某一时限(2个时间片时间)时增加其优先数等。
(3). (**)进程的优先数及需要的运行时间可以事先人为地指定,(也可以由随机数产生)。
(4). (**)在进行模拟调度过程可以创建(增加)进程,其到达时间为进程输入的时间。
0.
1.2.3实验题B:编写并调试一个模拟的进程调度程序,采用“基于时间片轮转法”调度算法对N(N不小于5)个进程进行调度。 “轮转法”有简单轮转法、多级反馈队列调度算法。
(1). 简单轮转法的基本思想是:所有就绪进程按 FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片长度相同。如果运行进程用完它的时间片后还未完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。直至所有的进程运行完毕。(此调度算法是否有优先级?)
(2). 多级反馈队列调度算法的基本思想是:
将就绪队列分为N级(N=3~5),每个就绪队列优先数不同并且分配给不同的时间片:队列级别越高,优先数越低,时间片越长;级别越小,优先数越高,时间片越短。
系统从第一级调度,当第一级为空时,系统转向第二级队列,.....当处于运行态的进程用完一个时间片,若未完成则放弃CPU,进入下一级队列。
当进程第一次就绪时,进入第一级队列。
(3). (**)考虑进程的阻塞状态B(Blocked)增加阻塞队列。进程的是否阻塞和阻塞的时间由产生的“随机数”确定(阻塞的频率和时间长度要较为合理)。注意进程只有处于运行状态才可能转换成阻塞状态,进程只有处于就绪状态才可以转换成运行状态。
2. 实验内容
根据指定的实验课题:A(1),A(2),B(1)和B(2)
完成设计、编码和调试工作,完成实验报告。
注:带**号的条目表示选做内容。
3. 实验环境
可以选用Turbo C作为开发环境。也可以选用Windows下的VB,CB等可视化环境,利用各种控件较为方便。自主选择实验环境。
#include<stdio.h> #include <stdlib.h> #include <conio.h> #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int super; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; void sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p; second=NULL; insert=1; } else /* 插入进程优先数最低,则插入到队尾*/ { first=first->link; second=second->link; } } } } void input() /* 建立进程控制块函数*/ { int i,num; //clrscr(); /*清屏*/ printf("\n 请输入进程个数?");//号 scanf("%d",&num); for(i=0;i<num;i++) { printf("\n 进程号No.%d:\n",i); p=getpch(PCB); printf("\n 输入进程名:"); scanf("%s",p->name); printf("\n 输入进程优先数:"); scanf("%d",&p->super); printf("\n 输入进程运行时间:"); scanf("%d",&p->ntime); printf("\n"); p->rtime=0;p->state='w'; p->link=NULL; sort(); /* 调用sort函数*/ } } int space() { int l=0; PCB* pr=ready; while(pr!=NULL) { l++; pr=pr->link; } return(l); } void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/ { printf("\n 进程名\t状态 \t优先级 \t所需时间 \t运行时间 \n"); printf("%s\t",pr->name); printf(" %c\t",pr->state); printf(" %d\t",pr->super); printf(" %d\t",pr->ntime); printf(" %d\t",pr->rtime); printf("\n"); } void check() /* 建立进程查看函数 */ { PCB* pr; printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/ disp(p); pr=ready; printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/ while(pr!=NULL) { disp(pr); pr=pr->link; } } void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/ { printf("\n 进程 [%s] 已完成.\n",p->name); free(p); } void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态)*/ { (p->rtime)++; if(p->rtime==p->ntime) destroy(); /* 调用destroy函数*/ else { (p->super)--; p->state='w'; sort(); /*调用sort函数*/ } } int main() /*主函数*/ { int len,h=0; char ch; input(); len=space(); while((len!=0)&&(ready!=NULL)) { ch=getchar(); h++; printf("\n The execute number:%d \n",h); p=ready; ready=p->link; p->link=NULL; p->state='R'; check(); running(); printf("\n 按任一键继续......"); ch=getchar(); } printf("\n\n 进程已经完成.\n"); ch=getchar(); }
通过本次实验,我觉得关于数据结构的算法和语法的基础知识很重要,特别是编写C语言程序时,涉及到一些复杂的程序,都会用到这些知识,由于数据结构基础知识学得不扎实,所以写代码遇到很多困难。虽然会定义结构体比较熟练,但是对于在程序中调用结构体就不太理解,导致多次出错,并通过查阅相关资料,然后不断修改,才把相关的实验基础要求完成。另外,写程序需要很好的思维习惯,并且要善于转化计算机操作与实际情况,才能把代码理解透,往后需要多多练习,形成自己的编程习惯和思维习惯。