kmp算法的应用

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. 

InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. 
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. 
Sample Input

2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1

Sample Output

6
-1

题目大意 :在一串字符中,找到可以匹配的另一字符串。

题目分析 :算法时间复杂度决定我们必须使用更加快速和有效的算法,即kmp算法。
posted @ 2017-08-05 19:19  Hunter丶安  阅读(307)  评论(0编辑  收藏  举报