B. Mr. Kitayuta's Colorful Graph

 B. Mr. Kitayuta's Colorful Graph
 time limit per test
 1 second

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Sample test(s)
Input
4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
Output
2
1
0
Input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
Output
1
1
1
1
2
Note

Let's consider the first sample.

The figure above shows the first sample.
  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color.

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <cmath>
 6 #include <map>
 7 #include <set>
 8 #include <stack>
 9 #include <queue>
10 #include <string>
11 #include <vector>
12 using namespace std;
13 const double EXP=1e-8;
14 const double PI=acos(-1.0);
15 const int INF=0x7fffffff;
16 const int MS=105;
17 
18 int fa[MS][MS];
19 void init()
20 {
21     for(int i=0;i<MS;i++)
22         for(int j=0;j<MS;j++)
23             fa[i][j]=j;
24 }
25 int find(int c,int a)
26 {
27     if(fa[c][a]==a)
28         return a;
29     return fa[c][a]=find(c,fa[c][a]);
30 }
31 void make_union(int c,int a,int b)
32 {
33     a=find(c,a);
34     b=find(c,b);
35     if(a==b)
36         return ;
37     fa[c][b]=fa[c][a];
38 }
39 int main()
40 {
41     int n,m,q,a,b,c;
42     init();
43     cin>>n>>m;
44     for(int i=0;i<m;i++)
45     {
46         cin>>a>>b>>c;
47         make_union(c,a,b);
48     }
49     cin>>q;
50     while(q--)
51     {
52         int ans=0;
53         cin>>a>>b;
54         for(c=1;c<=m;c++)
55             if(find(c,a)==find(c,b))
56                 ans++;
57         cout<<ans<<endl;
58     }
59     return 0;
60 }

 

posted @ 2015-01-21 20:58  daydaycode  阅读(162)  评论(0编辑  收藏  举报