关于动态规划法的问题

最长上升子序列(LIS)
问题描述:设现在有一串序列,要求找出它的一串子序列,这串子序列可以不连续,但必须满足它是严格的单调递増的且为最长的。把这个长度输出。
示例:1 7 3 5 9 4 8   结果为4
题例:参看POJ 2533
解法:
1.	DP之O(n2)算法:先按DP的思想来分析一下,要想求n个数的最长上升子序列,设有数据数组data[n]和状态数组dp[n],则对其尾元素data[n]来说,它的最长上升子序列就是它自己,即dp[n]=1,而当把它的前一个元素data[n-1]考虑进来时,如果data[n-1]<data[n]则会存在一个长度为2的上升子序列,如果data[n-1]>data[n]那么这个长度仍会是1。当把这个思想一般化的时候,对于任意一个元素data[k]来说,我们需要找出在data[k]以后的元素中比data[k]大,并且最长的一个序列做为它的后继。这样dp[k]就可以写成dp[k+1]+1。现在我们定义一个量dp[k]=m,它代表着到第k个元素为止(可以包含k也可以不包含k),它的最长上升序列的长度为m。仔细体会dp[k]=m的意义,这里面的k是可包括在内,也可以不包括在内的(与之前的最大子序列和不同)。要想确定这个m的值,就必须找到一个在第k个元素之前的一个元素的值小于data[k]的值,并且那个元素所对应的dp值是找到的满足第一个条件前提下dp值最大的一个。这就意味着我们需要内层遍历之前算出来的dp值,所以需要两层循环来实现这个算法。这样我们就可以总结出状态转移方程为dp[k]=max(dp[i](1<=i<=k&&a[i]<a[k])+1。其中找dp[i]的过程我们需要用一层循环来实现,而找dp[k]的过程也要一层循环,所以我们得到了O(n2)的算法。
dp[k]=max(dp[i])+1   其中i满足(1<=i<=k&&a[i]<a[k])
例程:
#include <stdio.h>
const int inf = -0x3fffffff;
int main(void)
{
    int i,j,len,max,res,data[] = {1,7,3,5,9,4,8},dp[20]={1};
    len = sizeof(data)/sizeof(int);
    res = max = inf;
    for(i=1;i<len;i++)
    {
        max = inf;
        for(j=0;j<=i;j++)
            if(data[i]>data[j]&&max<dp[j])
                max=dp[j];
        dp[i]=max+1;
        if(res<dp[i])
            搜索res = dp[i];
    }
    printf("%d\n",res);
    return 0;
}

 

posted @ 2014-01-19 21:01  6bing  阅读(172)  评论(0编辑  收藏  举报