VOC转COCO(自己的数据集)
VOC转COCO(自己的数据集)
import sys import os import json import warnings import numpy as np import xml.etree.ElementTree as ET import glob START_BOUNDING_BOX_ID = 1 # 按照你给定的类别来生成你的 category_id # COCO 默认 0 是背景类别 # CenterNet 里面类别是从0开始的,否则生成heatmap的时候报错 PRE_DEFINE_CATEGORIES = {"hat": 1, "person": 2} START_IMAGE_ID = 0 # If necessary, pre-define category and its id # PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4, # "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9, # "cow": 10, "diningtable": 11, "dog": 12, "horse": 13, # "motorbike": 14, "person": 15, "pottedplant": 16, # "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20} def get(root, name): vars = root.findall(name) return vars def get_and_check(root, name, length): vars = root.findall(name) if len(vars) == 0: raise ValueError("Can not find %s in %s." % (name, root.tag)) if length > 0 and len(vars) != length: raise ValueError( "The size of %s is supposed to be %d, but is %d." % (name, length, len(vars)) ) if length == 1: vars = vars[0] return vars def get_filename_as_int(filename): try: filename = filename.replace("\\", "/") filename = os.path.splitext(os.path.basename(filename))[0] return int(filename) except: # raise ValueError("Filename %s is supposed to be an integer." % (filename)) image_id = np.array([ord(char) % 10000 for char in filename], dtype=np.int32).sum() # print(image_id) return 0 def get_categories(xml_files): """Generate category name to id mapping from a list of xml files. Arguments: xml_files {list} -- A list of xml file paths. Returns: dict -- category name to id mapping. """ classes_names = [] for xml_file in xml_files: tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall("object"): classes_names.append(member[0].text) classes_names = list(set(classes_names)) classes_names.sort() return {name: i for i, name in enumerate(classes_names)} def convert(xml_files, json_file): json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []} if PRE_DEFINE_CATEGORIES is not None: categories = PRE_DEFINE_CATEGORIES else: categories = get_categories(xml_files) bnd_id = START_BOUNDING_BOX_ID image_id = START_IMAGE_ID for xml_file in xml_files: tree = ET.parse(xml_file) root = tree.getroot() path = get(root, "path") if len(path) == 1: filename = os.path.basename(path[0].text) elif len(path) == 0: filename = get_and_check(root, "filename", 1).text else: raise ValueError("%d paths found in %s" % (len(path), xml_file)) ## The filename must be a number # image_id = get_filename_as_int(filename) size = get_and_check(root, "size", 1) width = int(get_and_check(size, "width", 1).text) height = int(get_and_check(size, "height", 1).text) # if ".jpg" not in filename or ".png" not in filename: # filename = filename # warnings.warn("filename's default suffix is jpg") images = { "file_name": filename, # 图片名 "height": height, "width": width, "id": image_id, # 图片的ID编号(每张图片ID是唯一的) } json_dict["images"].append(images) ## Currently we do not support segmentation. # segmented = get_and_check(root, 'segmented', 1).text # assert segmented == '0' for obj in get(root, "object"): category = get_and_check(obj, "name", 1).text if category not in categories: new_id = len(categories) categories[category] = new_id category_id = categories[category] bndbox = get_and_check(obj, "bndbox", 1) xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1 ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1 xmax = int(get_and_check(bndbox, "xmax", 1).text) ymax = int(get_and_check(bndbox, "ymax", 1).text) assert xmax > xmin assert ymax > ymin o_width = abs(xmax - xmin) o_height = abs(ymax - ymin) ann = { "area": o_width * o_height, "iscrowd": 0, "image_id": image_id, # 对应的图片ID(与images中的ID对应) "bbox": [xmin, ymin, o_width, o_height], "category_id": category_id, "id": bnd_id, # 同一张图片可能对应多个 ann "ignore": 0, "segmentation": [], } json_dict["annotations"].append(ann) bnd_id = bnd_id + 1 image_id += 1 for cate, cid in categories.items(): cat = {"supercategory": "none", "id": cid, "name": cate} json_dict["categories"].append(cat) os.makedirs(os.path.dirname(json_file), exist_ok=True) json.dump(json_dict, open(json_file, 'w'), indent=4) if __name__ == "__main__": # import argparse # parser = argparse.ArgumentParser( # description="Convert Pascal VOC annotation to COCO format." # ) # parser.add_argument("xml_dir", help="Directory path to xml files.", type=str) # parser.add_argument("json_file", help="Output COCO format json file.", type=str) # args = parser.parse_args() # args.xml_dir # args.json_file xml_dir = "E:\DATASET\\111\yolo2voc\\val2017" json_file = "./instances_val2017.json" # output json xml_files = glob.glob(os.path.join(xml_dir, "*.xml")) # If you want to do train/test split, you can pass a subset of xml files to convert function. print("Number of xml files: {}".format(len(xml_files))) convert(xml_files, json_file) print("Success: {}".format(json_file))
转载:忘记了!!!